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ABSTRACT 

Mesoscale convective complexes are convectively driven, high impact weather systems with 

durations of approximately 10-12 hours, and are large contributors to daily and monthly rainfall 

totals. In West Africa, approximately 40 mesoscale convective complexes contribute an 

estimated one-quarter of the total rainfall amounts between July and September annually. As 

such, an understanding of the lifecycle, characteristics, frequency, and seasonality of these 

weather features is critical for climate studies, agricultural and hydrological studies, and for 

disaster management. Identification criteria of mesoscale convective complexes exist for infrared 

satellite data, but the spatial extent and the spatio-temporal variability of the convective 

characteristics of these mesoscale convective complexes make rainfall characterization difficult, 

even in dense networks of radars and / or surface gauges.  Hence, fully automated methods are 

required to explore mesoscale convective complexes in long-term infrared satellite data, and to 

determine their characteristics from other datasets, such as precipitation rate satellite datasets. 

 Automated identification methods of mesoscale convective complexes are based on forward- 

and / or backward-in-time spatial-temporal analyses of infrared satellite data, and usually 

incorporate a manual component to verify the features and / or characterize the associated 

precipitation. These existing identification and precipitation characterization methods are not 

readily transferable to “big data” such as satellite-derived datasets, thus hindering comprehensive 

studies of these features, both at weather and climate timescales. In recognizing these limitations 

and the growing volume of satellite data, this study explores the applicability of graph theory to 

creating a fully automated method for identifying mesoscale convective systems in satellite 

datasets. The framework for such a method is provided in this work.  

The results indicate that applying graph theory innately handles the complexity of the 
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mesoscale convective complexes, thus eliminating a manual verification stage. Furthermore, 

implementing a graph theory based method identifies individual and embedded features in 

infrared satellite datasets and extracts the associated precipitation rate data from other datasets 

for comparison in a seamless fully automated manner. The results also establish that a graph 

theory based method allows for studies over periods and spatial domains longer and larger than 

individual events.   
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CHAPTER 1. INTRODUCTION 

1.1 Research Problem and Broader Impacts 

Rainfall variability in current and future climates is a major concern for countries planning 

adaptation and mitigation strategies. For example, for impact studies on hydrological processes 

or agriculture, it is imperative to study the spatial and temporal scales of the processes 

influencing the partition of rainwater into the various aspects of the hydrological cycle. Because 

of this, large-scale predictions are not ideal. The World Climate Research Programme (WCRP) 

devised the Coordinated Regional Climate Downscaling Experiment (CORDEX) to address 

climate issues on regional scales, noting that certain regions, such as Africa, are especially 

vulnerable to climate variability and climate change. This is mostly due to the limited scientific 

understanding of atmospheric processes in those regions, the lack of adequate financial resources 

and technological resources, and limited human capacity to adequately adapt or mitigate (IPCC, 

2007; Giorgi, Jones & Asrar, 2009).  

The region of West Africa has a population of 245 million persons, with 65 percent of those 

persons living in rural areas (West Africa, n.d.). The average annual income is 309 US dollars, 

approximately 161 US dollars lower than that in the Sub-Saharan area. The major economic 

activity in most West African countries is agriculture, which is closely coupled to the weather 

and climate. Inaccurate timing of seasons (wet / dry) or ill-forecasted accumulations can lead to 

devastating effects in both arable and pastoral agriculture.  

The convective nature of tropical rainfall, the limited data available, the limited scientific 

understanding of the interactions between known drivers that generate rain, and the various 

spatial and temporal scales at which the major drivers respond are amongst the problems with 

forecasting rainfall in West Africa (Waliser et al., 2012). Global climate models (GCMs) and 
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regional climate models (RCMs) can resolve large-scale (synoptic) features such as the Inter-

tropical Convergence Zone (ITCZ), and represent convective precipitation in their 

parameterizations. However, there is high uncertainty in models’ ability to represent rainfall as it 

is a parameterized process, and thus, the lack of the scientific understanding of the processes in 

the current climate, limited data and limited computer resources restrict the complexities of the 

parameterizations. For example, Nukulin et al. (2012) examined the accuracy of rainfall 

representation within an ensemble of CORDEX-Africa RCMs against two types of satellite 

derived data and (coarse) rain gauge data, and determined there were issues with the timing and 

the positioning of rainfall events within the ensemble, especially concerning diurnal rainfall 

peaks. To effectively model rainfall, knowledge and representation of the diurnal response of the 

convection within the climate model would be necessary (D'Amato & Lebel, 1998; Slingo, 

1987). Additionally, coupling of the diurnal cycle and the large-scale climate dynamics is also 

necessary (Duvel, 1989).  

The distribution of the annual rainfall in West Africa is minimum (~50mm) towards the 

Sahara Desert and maximum along the coastal regions close to the equator (~4000mm in some 

areas). The distance between the northern part of West Africa to the southern part is ~ 2000 km 

indicating a large change in rainfall totals across approximately 20 degrees of latitude. Most of 

the rain within the region falls in the afternoon and at night. The rainfall is strongly correlated 

with mesoscale convective systems (MCSs), is highly spatially and temporally variable, and is 

heavily influenced by land-surface properties and large-scale circulations. MCSs are well-

organized areas of thunderstorms that persist for several hours (Ray, 1986). A subclass of MCSs 

is mesoscale convective complexes (MCCs). MCCs are large convective weather systems that 

are associated with large precipitation totals in short durations. According to Maddox (1980b), 
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the identification of MCCs utilizes infrared satellite imagery. This method is preferable, as the 

spatial expanse of MCCs and large-scale variability in their convective characteristics make them 

difficult to characterize, even in dense networks of radars and / or surface rain gauges. MCCs are 

most common along the western coastline countries of West Africa, and within the Sahel region 

(Laing & Fritsch, 1993). Furthermore, as noted by Taylor, Lambin, Stephenne, Harding and 

Essery (2002) and Mathon, Laurent and Lebel (2002), surface observations in West Africa are 

few and / or unreliable with respect to duration and frequency of measurements, making it is 

beneficial to observe the rainfall characteristics via satellite images. However, satellite images 

are limited in their accuracy and techniques to derive variables from satellite sensors are a 

continuous source of research, as noted by Arkin (1979), Stephens (1990), Nalli and Stowe 

(2002) and Nalli and Reynolds (2006).  

Predictability of rainfall should consider all scales that it occurs on (Hoskins 2013).  As such, 

it is expected that MCCs should be represented in climate model outputs. However, their 

representation in this data set would not follow the identification criterion used with 

meteorological analysis, such as criterion developed by Maddox (1980b) because the convective, 

microphysics and land-surface processes that produce MCCs occur on the sub-grid scale in the 

models. Additionally, climate models do not necessarily forecast the variables used in MCC 

identification criterion on the scales required. Instead, representation of MCCs within existing 

climate models intuitively would be embedded in the monthly and seasonal rainfall predicted. 

However, this lends to the concern of the representation of MCCs in the regional climate model’s 

(RCM) simulated monthly totals, and if the MCCs are being represented as extremes or areas of 

high precipitation. Another concern is if RCMs are accurately reproducing MCC rainfall totals 

and variability in current climates and what methods can be used to evaluate the MCC rainfall 
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variability in current observation datasets of rainfall. In order to address these concerns, a means 

of determining the characteristics of MCCs (and other mesoscale convective systems) in 

variables that are commonly measured, such as precipitation, is necessary. Currently, no such 

method exists. 

This research proposes to explore a transferable, fully automated method for identifying 

mesoscale convective systems, specifically mesoscale convective complexes, over long records 

of satellite datasets representing different variables. In this research the variables considered are 

brightness temperature and precipitation rate, though the method is extensible to other variables 

e.g. precipitation totals. It is recognized that the final product of such a method would engender a 

new scope of evaluations of MCC features in various observation and model datasets, but, only 

the exploration stages of the concept of such a method are presented in this work. It is further 

proposed to utilize functionality from an Apache Software Foundation (ASF) project. The ASF is 

an open-sourced community-led software development platform that provides software products 

for the good of the public. Specifically in this research the ASF Top Level Project, Apache Open 

Climate Workbench1 (OCW) will be utilized for data extraction, manipulation such as 

regridding, metrics calculations, and visualization for handling the various datasets in the 

method. Leveraging Apache OCW will not only efficiently handle the “big data” issues inherent 

within this problem, but will also encourage a unified information technology approach 

(Mattmann, 2013).  

                                                
1 http://climate.apache.org/ 
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1.2 Research Objectives 

The preceding section highlighted, on the high-level, the need for an application that address 

data methods for analyzing satellite data so that comprehensive studies related to MCCs can be 

conducted. Specifically, the following points have been identified as a need:  

(1) An automated method to allow for comparisons of the MCCs (and other large MCSs) 

identified in the infrared satellite datasets with other datasets e.g. precipitation data from 

various sources e.g. precipitation rate satellite data or rain gauge data, to determine 

precipitation characteristics of the features and an appropriate database. This method 

should seamlessly handle datasets of various spatial and temporal resolutions. 

(2) An automated method to identify weather-scaled phenomenon, large-scaled MCSs, in 

long-term high-resolution infrared satellite datasets, to produce datasets related to the 

weather feature. This method should seamlessly handle the big data issues – voluminous, 

variety and velocity – associated with dealing with satellite data over long-term periods, 

and climate model data 

This research will examine a method that compliments a framework for a fully automated 

tool for identifying mesoscale convective complexes in West Africa. 

Objective 1: Identify or create a method that can identify mesoscale convective complexes in 

infrared and precipitation satellite datasets without manual intervention.  

Objective 2: Explore the applicability of that method to addressing the identification of 

mesoscale convective complexes over West Africa in satellite datasets durations longer than a 

single event.  
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Objective 3: Create the method in an open-sourced environment (Mattmann et al., 2012). 

This encourages reuse of existing methods for aspects of the application and promotes overall 

contributions (development) of the code associated with the application long after the scope of 

this project. Additionally, by creating the tool in an open-sourced environment, the software 

development must follow best software development practices such as using a component / 

module based architecture and iterative development with verification of the quality, thus 

making it a viable application in other environments.  

1.3  Roadmap to the Document 

Background information regarding rainfall variability in the region of interest, West Africa 

will be provided in Chapter 2. Specifically, the significance of rainfall variability in West Africa 

and a literature review of its drivers will be presented. The data sets and tools used within this 

study will then be briefly discussed in Chapter 3. The Apache OCW will also be explained in 

that chapter. Chapter 4 will present the new automated method for identifying large-scaled 

weather systems, specifically MCCs, in infrared and precipitation satellite datasets. Chapter 5 

will present case studies demonstrating the accuracy of the automated method in different 

scenarios. Finally, Chapter 6 will present the conclusions of the research and future directions for 

the work.  
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CHAPTER 2. BACKGROUND OF RAINFALL VARIABILITY IN WEST AFRICA 

The rainfall variability in West Africa has local and international socio-economic and 

climatic impacts (Redelsperger et al., 2006). Within the scope of this project, it is important to 

understand the not only the characteristics of the weather feature that will be the focus of this 

research, but also the influences on its formation. This chapter provides a summary of rainfall 

variability in West Africa and outlines limitations with rainfall climate projections in this region.!

2.1 A Summary of Rainfall Variability in West Africa 

2.1.1 Rainfall Distribution in West Africa 

West Africa is considered to be one of the semi-arid regions of the world, and inherently an 

area of unreliable rainfall from year to year. The seasons in West Africa are defined as wet or 

dry, where the dry season extends from the end of November until April, and the wet or rainy 

season extends from May until October. The rainy season is bimodal in pattern where the first 

period extends from the end of May until August, and the second, shorter period from September 

to October. The maximum rainfall occurs within the first rainy period, around late August. In 

general, the rainfall in West Africa is highly spatially and temporally variable. Observations 

indicate that there are distinct zones of homogenous rainfall following lines of latitude within the 

region (Nicholson, 1980).  

Within the northern part of West Africa, the annual rainfall is ~50 mm. The rainfall totals 

increase southward towards the equator, with maximum areas of rainfall along the equatorial 

coastal areas totaling as much as 4,000 mm annually (Figure 2.1). The homogenous rainfall 

zones are broken up within the region referred to as the Sahel. In most of West Africa, 
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observations indicated the rainfall totals of the 1970s and 1980s were ~180mm – 200mm less as 

compared to those of the 1950s and 1960s (Le Barbé, Lebel & Tapsoba, 2002). 

 

 

   

Figure 2.1. Annual rainfall (cm) in West Africa, taken from Nicholson (1980). The blue box 
provides an estimate of the area referred to as West Africa within this study. 

 

Events such as the famines in the Sahel in 1972 – 1974 and 1983 – 1985 are so distinct, 

that they not only aroused international interests to the food security and famine issues in these 

areas, but also sparked the interest of atmospheric scientists to investigate the mechanisms 

responsible for the anomalous events and possibly their predictability. Observations also 

indicated that annual rainfall totals exceeding the annual average have been occurring more 

frequently in the 2000s. 

2.1.2 Drivers of Rainfall Variability in West Africa 

The climate system is commonly defined as all air, water, ice, minerals, rocks and living 

organisms on Earth. Within the climate system, transfers of energy, momentum and mass are 

simultaneously occurring at several temporal and spatial scales (Ray, 1986). Weather is 
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generated by instabilities created in variables such as pressure, temperature, humidity, as a result 

of changes in the climate system due to the response of a variable on a given scale. Within the 

atmosphere, temporal scales that result in changes of variables range from short term (in the 

order of microseconds) for turbulent and frictional influences, to long term (in the order of years 

and centuries) for planetary scale circulations within the system. Figure 2.2 provides an 

illustration of common weather phenomenon in the Tropics and their spatial and temporal scales. 

For the purpose of this study, attention is given to the mesoscale weather phenomenon. 

Mesoscale weather features have a temporal scale ranging from hours to one day, and a spatial 

resolution ranging from 102 m to 106 m. Continuity exists between the scales, for example, 

mesoscale weather features that do not decay, continue to grow to meet the criteria of synoptic 

features. 

 

 

 

Figure 2.2. Classification of meteorological scales for typical weather phenomena in the 
Tropics (Laing and Evans, 2011). 
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Climate is the statistical description regarding the average and variability of weather and 

other climate system parameters over a given location, such as a country, a region, or a planet, 

and over a given period, such as months, thousands of years, or millions of years (Frequently 

Asked Questions, n.d.). Climate variability refers to variations in the mean state, standard 

deviation and other statistics of climate on temporal scales that exceed any one weather event. 

According to the IPCC (2007) seasonal variability is used to define the changes of a 

phenomenon (weather variable or feature) within a 12-month period. Intraseasonal variability 

refers to the changes within a season, and interannual variability is used to define the changes 

between years. The term climate change is used to define statistical significant and lasting 

change in the mean state and / or variability of the climate that persisted for extended periods. 

The reason for the climate change may be linked to natural processes (internal or external to the 

climate system) or to anthropogenic changes in the climate system. Like weather, climate 

classification also has a spatial component. In general, a direct correlation exists such that a short 

temporal scale correlates with a small spatial scale, e.g. seasonal variability studies focus over 

geographical regions such as countries and cities, and vice versa.  

The interannual variability of the rainfall in the Sahel region, and generally West Africa, has 

been linked to large-scale tropical convection associated with global and regional climate 

features as in Figure 2.3. From observations during Global Atmospheric Research Program 

(GARP) Atlantic Tropical Experiment (GATE), which commenced in the summer of 1974, 

identified and confirmed a relationship between the diurnal behavior of convection and rainfall 

amounts indicating an intraseasonal scale of rainfall variability also exists (Kuettner, 1974; 

Murakami, 1979). The interseasonal variability of rainfall has been linked to regional drivers, as 

well as smaller scale weather features such as mesoscale convective systems (MCSs).  
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Figure 2.3. Large-scale and regional features driving the West African rainfall variability 
(Laing and Evans, 2011). 

!
!
2.1.3 Large-scaled Circulations 

The Hadley circulation is a thermally-driven meridional circuit comprising of warm 

equatorial air rising and flowing toward the poles in the upper atmosphere, cooling while being 

transported aloft, and then sinking to the surface at subtropical latitude (Hartmann, 1994; 

Hastenrath, 1991; Holton, 2004). The Hadley circulation varies both temporally and spatially. 

These variations are closely coupled to the meridional solar heating and absorption due to 

seasons, according to the Earth-Sun relationship. During the boreal winter, there is cross-

equatorial overturning within the Northern Hemisphere Hadley circulation i.e. the rising branch 

is in the Southern Hemisphere. The rising branch of the Hadley cell is associated with wet 

climates where precipitation is heavy and exceeds the evapotranspiration for much of the year. 

The sinking branch is associated with desert climates.  

The Inter-tropical Convergence Zone (ITCZ) is defined as the zone of the ascending 

branches of the Northern and Southern hemisphere Hadley circulations and is driven by the 

large-scale continuity of mass and momentum (Holton, 2004). The vertical thermodynamic 
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structure of the ITCZ indicates that the atmosphere is conditionally stable above the middle 

troposphere, and as such, the large-scale upward mass in this environment would lead to cooling 

aloft (and thus would not satisfy the heat energy budget in the tropics). In order for this energy to 

be transported aloft into the upper troposphere, the equivalent potential temperature has to be 

conserved as a parcel is traveling upwards. This is possible through deep cumulus cloud 

formations such as cumulonimbus clouds. Hence, the ITCZ is actually observed (especially 

visually on satellite images) as clusters of vigorous cumulonimbus and convection clouds 

divided by clear patches along the convergence zone of the Hadley cells. In West Africa, the 

north-south movement of the ITCZ as the seasons change between hemispheres is associated 

with the onset and ending of the rainy season.  

2.1.4 Regional Circulations  

The Tropical Easterly Jet (TEJ) is an upper tropospheric circulation (observed between 200 

mb and 100 mb) over Asia / Indian Ocean and West Africa during the boreal summer, where 

winds in the jet stream are ~40 ms-1. The Hadley circulation caps the TEJ. It is noteworthy that 

though there are two components of the TEJ, the information provided within refers to the 

branch over West Africa. Because the TEJ results from a thermal wind circulation, its location is 

heavily influenced by the location of the African continent and the Saharan Desert, where the 

mid-tropospheric thickness is large and the gradient reversed due to the intense heating over the 

desert. It is persistent around 10 °N, though over more continental regions it can be higher, 

tending to 15 °N (Fontaine & Janicot, 1992). Rainfall maximum totals are found on the southern 

side of the jet, and rainfall minimum totals to the northern side (Koteswaram, 1958). Excessive 

rainfall in a given year in West Africa is associated with an abnormally fast TEJ and vice versa 

(Fontaine & Janicot, 1992). Further analysis of dry and wet days within the rainy season by El 
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Houssein and Decleir (1998) showed that rainy days are always correlated with a significant 

increase of the speed of the TEJ, and dry days do not have this distinct characteristic. This small 

temporal scale finding indicates that the rainfall variability observed may be more keenly 

dependent on daily changes than regional changes. 

The African Easterly Jet (AEJ) also referred to as the West African Jet, is a mid-level 

tropospheric jet stream observed from April to November that forms as a result of the warming 

of the Sahara Desert and the surface high-pressure system associated with that heating i.e. the 

Saharan High (Koteswaram, 1958). The Saharan High leads to strong positive meridional 

geopotential gradients between the desert and the oceanic air to the south of the region, causing a 

strong geostrophic easterly flow (thermal wind) of ~10 ms-1 at 650 mb and ~13 °N, although it is 

more northward in July and August (Burpee, 1972). As illustrated in Figure 2.4, Cook (1999) 

demonstrated that the formation of the AEJ requires summer insolation (sensible heat fluxes) and 

dryness (latent heat fluxes) over Saharan Africa. Thorncroft and Blackburn (1999) showed that 

the AEJ (and the ITCZ) contribute to the unstable environment in the rainy season by reversing 

the potential vorticity gradient throughout the atmosphere.  

In general, the location of the jet is important, as a strong African Easterly Jet (AEJ) is 

associated with low rainfall totals over West Africa. Furthermore, the largest wind anomalies 

occur at 10 °N and 5 °N (Duvel, 1989). The AEJ is associated with African Easterly Waves 

(AEWs) formation – disturbances generated by baroclinic-barotrophic instability within the jet 

(Burpee, 1972). The combination of the Tropical Easterly Jet (TEJ) and the AEJ provide a zonal 

circulation of mass, moisture and energy within the region in a similar sense to the global Walker 

circulation. 
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Figure 2.4. A schematic of the African Easterly Jet (Parker, Thorncroft, Burton, & 

Diongue-Niang, 2005). 

 

 

Meteorologists and researchers alike have identified a boundary between dry and hot airmass 

to the north of West Africa, and wet and cooler airmass to the south. This boundary has been 

dubbed the Inter-Tropical Front (ITF) and is properly defined by two criteria at the surface: (1) a 

pressure minimum and a boundary between northerly and southerly flow; and / or (2) dew-point 

temperatures of roughly 15.5 °C (Beer, Greenhut & Tandoh, 1977). The geopotential height 

minimum is considered within the criteria for location above the surface, instead of the pressure 

minimum.  

2.1.5 Sea-Surface Temperature Anomalies 

Warm sea surface temperatures (SSTs) imply low atmospheric pressure at the surface that 

lead to rising air and an area favorable to cloud development. In addition to these heat fluxes, 

ocean basins also provide moisture transfers into the atmosphere. SSTs have been linked to 

rainfall through the enhancement of surface pressure gradients between the oceans and the land 
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that influences surface wind flow, and leads to convergence and cloud formation. A common 

example of such an interaction on the local / mesoscale scale is the sea-breeze phenomenon 

(Hastenrath, 1991). On the larger temporal and spatial scales, SST anomalies in the tropical 

ocean basins influence the location of the kinematic axis between Northern and Southern 

hemispheric trade winds and the near-equatorial convergence zones, and thus the location of 

maxima precipitation and cloudiness that is, the ITCZ location. Furthermore, the low-level 

convergence generated from pressure gradients associated with SST anomalies can feed into the 

regional and large-scale circulations (Lindzen & Nigam, 1987). Lamb (1978) demonstrated that 

large tropical Atlantic SST anomalies accompanied anomalous tropical Atlantic surface 

atmospheric circulation patterns that influenced the sub-Saharan rainfall. Specifically, Lamb 

(1978) found that warm SSTs anomalies ~300-500km south of 10°N and east of 35°W lead to 

droughts whilst northward anomalies lead to higher rainfall totals in the July – September period.  

Fontaine and Janicot (1996) determined that drought events in West Africa are associated 

with warm SST anomalies in the eastern Pacific and the Indian Ocean, but drought specifically in 

the Sahel region corresponds to warm SST anomalies in the southern (equatorial) Atlantic and 

cold SST anomalies in the northern Atlantic. Flooding events in West Africa, to include the 

Sahel region, are associated with warming SSTs in the northern Atlantic. Fontaine et al. (2010) 

utilized observational, remotely sensed and reanalysis datasets to determine the impact of 

Mediterranean SSTs on West African rainfall and confirmed that warm events lead to rainier 

periods, but also warming of the Eastern Mediterranean affects the low-level wind flow such that 

it leads to a more northward migration of the West African Monsoon (WAM), an enhancement 

of the Tropical Easterly Jet and a decrease in the African Easterly Jet.  
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Giannini, Saravanan, and Chang (2003) identified the Sahel rainfall as being sensitive to SST 

anomalies and trends in the remote Pacific and Indian basins, and the local Atlantic basin. 

Giannini et al. (2003) further proposed that the warm equatorial Atlantic SST anomalies disrupt 

the WAM. 

2.1.6 Land Use Changes 

Deforestation in West Africa has been correlated with changing soil moisture, and thus latent 

heat fluxes, as well as sensible heat fluxes through the altered surface albedo over large areas. 

Researchers thought this to be linked to the rainfall variability experienced in the Sahel via the 

albedo-precipitation effect – the albedo of bare soil is lower than that of vegetation, thus the 

removal of vegetation over an area would increase atmospheric subsidence and reduce cloud 

formation creating a positive feedback loop as drier conditions would inhibit vegetation growth 

and increase rainfall perturbations south of the region (Charney, 1975; Otterman, 1974; Taylor, 

Lambin, Stephenne, Harding, & Essery, 2002; Xue & Shukla, 1993; Zeng, Neelin, Lau, & 

Tucker, 1999). Afforestation also influences the rainfall in West Africa via surface energy 

balance and cloud cover interactions (Xue & Shukla, 1996). Eltahir and Gong (1996) propose a 

relationship between vegetation and regional circulations including the West African Monsoon 

(WAM). Zeng et al. (1999) argued that the natural vegetation interaction influences the 

interannual variability and were able to mostly replicate the observation record, both in terms of 

magnitude and timing, with a coupled atmosphere-land-vegetation model that was driven by sea 

surface temperatures (SSTs). Taylor et al. (2002) showed that the change in land use in the Sahel 

prior to 1996 as a result of agricultural practices lead to a conversion of 4 percent of vegetated 

land to bare soil area. This change reduced rainfall totals annually, initiated the WAM a month 

too early, delayed the onset of the wet season in July (although the August totals were 
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unaffected), and did not allow the band of maximum rainfall to penetrate northward into the 

Sahel as observations indicate. In general, land use on its own as a driver of the dry spells 

observed in the 1990s in the Sahel is not sufficient, but cannot be discredited in climate modeling 

(especially regional climate modeling). 

2.1.7 Synoptic-scaled Circulations – African Easterly Waves  

Intraseasonal fluctuation of tropical convection occurs on short temporal scales, and is 

associated with synoptic-scale (large scale) wave disturbances. Over West Africa, these wave 

disturbances are referred to African Easterly Waves (AEWs). AEWs are wave-like disturbances 

of wavelengths of  ~3000km, that propagate westward from northern Africa into the Atlantic 

Ocean every ~3-4 days during the boreal summer (Burpee, 1974).  They are generated by the 

decreasing potential vorticity towards the north that is, baroclinic –barotropic instabilities within 

the African Easterly Jet (AEJ). AEWs can be characterized by low-level anomalies to the north 

of the AEJ and be associated with large MCSs such as squall lines as they propagate westward 

(Pytharoulis & Thorncroft, 1999).  

2.1.8 Mesoscale Convective Systems and Mesoscale Convective Complexes  

Superimposed on these intraseasonal changes are diurnal and inter-diurnal changes –

mesoscale convective systems (MCSs) that cover various temporal and spatial scales.  In general, 

MCSs include organized thunderstorms that persist for a few hours, and squall lines that persist 

longer (Figure 2.5). Mesoscale convective complexes (MCCs) are a subset of large and well-

organized MCSs. Maddox (1980b) identified these features as weather systems that persist for at 

least six hours, with an average area of at least 100 000 km2, at an average cloud top temperature 
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of 241K, with a colder convective core representing at least 50 percent of the overall area, with 

average temperature of 221 K.  

 

 

 

Figure 2.5. A schematic of the temporal and spatial scales of selected mesoscale convective 
systems. 

!
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The contribution of the ‘short-lived’ (24 hours or less) MCSs has been established. Le Barbé, 

Lebel and Tapsoba (2002), utilizing observation data from over 300 daily rain gauges covering 

an area of 1,700,000 km2 in West Africa, determined that the number of the rainfall events is 
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highly correlated to the number of rainy days, where the ratio between the number of rain events 

and the number of rainy days depended on location and time of the year (Table 2.1). This 

indicates that an event occurring on a timescale less than daily is significantly contributing to the 

rainfall totals, and confirms an intraseasonal mode of the rainfall.  

 

Table 2.1. The number of rainy days and the number of rain events observed in Niger 
between 1990 and 1998 (Le Barbé, Lebel & Tapsoba, 2002). 

!
!

 May Jun Jul Aug Sep 

Number of rainy days 5.9 7.8 11.4 13.9 7.7 

Number of rain events 2.4 5.1 12.1 17.3 7.0 

 

 

The high precipitation events during short periods associated with these events impact the 

climatological records of rainfall. For example, D'Amato and Lebel (1998) showed from a rain 

gauge network validated against infrared satellite imagery, that MCCs contribute to more than 70 

percent of the seasonal rainfall in Niger, and MCSs more than 90 percent of the annual rainfall. 

They attempted to illustrate the relationship of these small-scale features in storm rainfall 

statistics either in the large-scale north-south propagation of the ITCZ or as random extreme 

events. They found that the mean storm rainfall in their study area was climatologically 

stationary, thus making it a stable parameter for characterizing rainfall in the Sahel, as it 

indicates the interannual rainfall variability is dependent on the number of rainfall events 

(MCCs). Laing, Fritsch and Negri (1999) considered the rainfall contributions from various 

satellite datasets during the summer Sahelian rainfall months and determined that MCCs 
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contributed ~22% of the rainfall. These findings indicate an understanding of the lifecycle, 

characteristics, frequency and seasonality of convective features globally, is important for 

several climate-related studies based on predictions of rainfall, such as hydrological studies, 

agriculture planning and disaster management.  

The relationship between the regional circulations and the intraseasonal variability of MCS 

events (and thus rainfall totals) appears to be linked to the spatial scale of the MCS features. 

Mathon, Laurent and Lebel (2002) considered the relationship between the synoptic large-scale 

circulations (easterly waves) and small-scaled MCSs (defined as features lasting at least 3 hours 

with an embedded area greater than 5,000 km2 at a temperature 213 K, and a mean speed greater 

than 10 ms-1) over the Sahel from satellite images, reanalysis data and a network of 30 gauges for 

five rainy seasons between 1990–1994. They found that at the seasonal scale, the frequency of 

the sub-category of MCSs considered was not affected by the easterly wave occurrences, thus 

indicating no association to the interannual variability of rainfall. Velasco and Fritsch (1987) 

clearly established the relationship between MCC formation – a sub-category of large-scaled 

MCS – and the regional circulations such as the magnitude of wind shear, low-level jets, and 

latitude.  

From the information provided, it is not far concluding that climate variability and climate 

change could influence MCC formation and frequency. However, known studies do not exist. 

Further, as seasonal rainfall totals are not only correlated with regional circulations, cloudiness 

and the number of large-scaled MCSs embedded in these regional features, but also with the 

rainfall (characteristics) associated with these large-scaled MCSs, studies related to them are 

merited to add to the understanding of convection and the processes that lead to convection 
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organization at the various mesoscales. Hence, this research will focus on mesoscale convective 

complexes – the large-scale sub-category of the mesoscale convective systems.  

2.2       A Summary of Mesoscale Convective Complexes  

2.2.1 Global Mesoscale Convective Complexes 

Mesoscale convective complexes (MCCs), a sub-category of mesoscale convective systems 

(MCSs), are large, mesoscale, convectively-driven weather systems that are generally associated 

with high precipitation events during short periods (Maddox, 1980b). An example of the feature 

is provided in Figure 2.6 and the full definition is provided in Table 2.2. 

 

 

 

Figure 2.6: An example of a mesoscale convective complex (MCC) over the United States of 
America on 8 Jul 1997 from enhanced infrared satellite imagery. 

!
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Table 2.2. Mesoscale convective complex (MCC) properties based on infrared satellite 
imagery showing Maddox (1980b) criterion and the Laurent et al. (1998) variation of the 

criterion (in blue). 

!
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 PHYSICAL CHARACTERISTICS 

SPATIAL 

RESOLUTION 

A – Cloud shield with continuously low IR temperature ≤ 241 K must 

have an area ≥ 100 000km2 

B- Interior cold cloud region with temperature ≤ 221 K must have an 

area ≥ 50 000km2 

 

A – Cloud shield with continuously low IR temperature ≤ 233 K must 

have an area ≥ 80 000km2 

B- Interior cold cloud region with temperature ≤ 213 K must have an 

area ≥ 30 000km2 

MAXIMUM 

EXTENT 

Contiguous cold cloud shield (IR temperature ≤ 241 K) reaches 

maximum size 

SHAPE  Eccentricity  ≥ 0.7 at time of maximum extent  

DURATION A and B must be met for a period ≥ 6hrs and ≤ 24hrs* 

*24hrs – there is no set maximum time in the literature however, it is 

recognized that if such a feature persists for more than 24hrs, it falls 

within the synoptic scale. At the same time, even though the temporal 

requirements may have been met for a synoptic system, the spatial 

requirements may not have been met. 
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MCCs are significant not only because of their ability to generate high amounts of 

precipitation in short durations on the weather timescale, but also the extent to which they alter 

the atmosphere and participate in the global energy and water budgets on the climate timescale 

(Duvel, 1989; Fritsch, Kane & Chelius, 1986; Gamache and Houze Jr., 1983; Leary & Houze Jr., 

1980; Tollerud & Collander, 1993).  

Laing and Fritsch (1997) studied the characteritics of MCCs globally. More than 400 MCCs 

occur at various locations around the globe, but mostly in tropical and mid-latitude locations, 

with approximately 66 percent of the occurrences in the Northern Hemisphere. They also are 

found mostly over continents though they can occur over oceans. The average duration of these 

systems is 10 hours, but this varies according to location. Generally, the systems are longer 

lasting in the Southern Hemisphere than in the Northern Hemisphere, and MCCs originating over 

the oceans are longer lasting originating over land.  MCCs typically have cold cloud shields 

sized between 2–4 x 105 km2, tending towards the larger sizes in locations over oceans and in the 

Southern Hemisphere. Studies of MCCs have been conducted over individual locations, in an 

effort to determine MCC characteristics and formation at that location. Examples include 

Velasco and Fritsch (1987) considering MCCs in the Americas and Blamey and Reason (2012) 

considering MCCs in Southern Africa. Though there are many similarities, there are also 

distinctions associated with location. Similarities regarding formation (in space and time), 

longevity and size, and are correlated with both the time of the year and day. MCC formation is 

favored in the summer season near the summer solstices in either hemisphere. Their frequency is 

dominated by the Earth-Sun relationship and the large-scale circulation pattern regarding the 

migration of semi-permanent high and low pressure systems. The summer changes of baroclinic 

atmospheric properties such as deformation and shear, especially in mid-latitude locations, create 
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a favorable environment for growth and sustaining their structure (Laing & Fritsch, 1997). Also, 

globally, MCCs tend to initiate in locations where there is: (1) a low-level jet; (2) a low-level 

convergence; (3) upper-level divergence; (4) an approaching mid-level vorticity maximum 

(associated with a weak short wave trough) (Laing & Fritsch, 2000). 

Diurnally, MCC genesis occurs in the early afternoon and dissipation occurs in the early 

morning. Differences are related to the time of initiation, duration and cloud pattern 

characteristics. MCCs in the Southern Hemisphere initiate earlier and end later than those in the 

Northern Hemisphere by approximately two hours. Additionally, there are characteristic cloud 

patterns associated with the stages of development For example, MCCs in the Central Plains of 

the United States are often more linearly-shaped in their initial stages of cloudiness and cloud 

shields (Laing & Fritsch, 1997). MCC nocturnal organization is associated with differential 

radiative heating between the convective system that is warm core, and the environment that is 

cooler. In mid-latitude locations, this configuration is as a result of cloud-clear radiative 

processes whereby such temperature gradients lead to subsidence in the ambient atmosphere and 

low-level convergence into the system (Gray & Jacobson Jr., 1977). Additionally, radiative 

cooling at the cloud top and warming at the cloud base enhance the convective instability in 

mature convective systems (Webster & Stephens, 1980). In tropical locations, the convective 

systems are modulated via large-scale atmospheric destabilization (Miller & Frank, 1993). In 

general, large scale factors such as the position of long waves such as Rossby waves, and 

gradient zones between maxima and minima outgoing longwave radiation influence MCC 

formation (Augustine & Howard, 1991; Laing & Fritch, 1997).  

MCC formation is also correlated with location on the globe. Regional factors influencing 

MCC formation are the position of the low-level jet, and low-level frictional effects associated 
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with elevation as MCCs tend to form on the lee-side relative to the prevailing mid-level flow of 

elevated terrain (Laing & Fritsch, 1993).  

MCCs contribute to the local and regional mass, moisture and heat fluxes (Leary & 

Houze Jr., 1980, but their formation and variability is also correlated to large-scale circulations 

that are also influenced by mass, moisture and heat fluxes. As such, intuitively MCCs should 

have some inter-annual variability. However, there have been few studies focused on addressing 

this issue, in part due to the limited methods for evaluating long-term datasets of MCCs 

(methods for evaluating MCCs will be dealt with in the following section). Nonetheless, the few 

studies that have been conducted confirm there is some inter-annual variability of MCCs and 

MCSs in general. To illustrate, Velasco and Fritsch (1987) showed that MCCs in mid-latitude 

locations in South and Central America doubled in frequency for the ‘El Niño’ year compared to 

non-ENSO event for the period considered in their study, May 1981 – Apr 1983.  

2.2.2 West African Mesoscale Convective Complexes 

Laing and Fritsch (1993), Jobard and Desbois (1994), D'Amato and Lebel (1998), Laurent, 

D’Amato and Lebel (1998), Mathon and Laurent (2001), and Mathon, Laurent and Lebel (2002) 

have all explored the characteristics and rainfall contributions of MCCs and large-scale MCSs in 

the Sahel region, and West Africa in general Approximately 41 MCCs occur annually in West 

Africa in the boreal summer months July – September (Laing, Fritsch & Negri, 1999). Similar to 

the global population, West African MCCs are predominately formed and found over land – ~95 

percent, with most activity in the Sahel region and little in the tropical rain forest belt of 

equatorial Africa (Laing & Fritsch, 1993).  

The West African MCC development varies according to location. In central and North 

Africa regions between 5°S and 18°N – an area downstream of mountain ranges – generation is 
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favored due to the orography. These mountain ranges extend above 1.5 km and persistent 

vortices associated with them are observed in wind fields even at the 850 mb level during 

summertime (Laing & Fritsch, 1993; Viltard, Laurent & De Felice, 1990). As one approaches the 

coastline of the West Africa region (and the equator), MCC generation is associated with 

monsoonal effects of a surface thermal trough (Viltard et al., 1990). 

The West African MCCs, like the global population, are nocturnal features. Their diurnal cycle is 

similar to global populations, with thunderstorms developing in the mid-afternoon (~1400LST), 

MCC genesis occurring around 1900LST and reaching a maximum extent at ~0100LST then 

decaying at ~0600 – 1100LST. Their durations are longer than the global population, being 

~11.5hours (Laing & Fritsch, 1997). In terms of the cloudiness, an elongation of the cold cloud 

shield characterizes the decay stage of these MCCs (as opposed to North American MCCs where 

the elongated shield characterizes the initation). West African MCCs’ typical sizes are smaller 

than the global average between 2–4 x 105 km2, and their cloud shields colder ranging between 

240K and 213K. Laurent, D’Amato and Lebel (1998) determined smaller areas according to the 

colder temperature ranges associated with the cloud shield. The cloud shields associated with 

convective cloud in this region are within the temperature range 233K – 213K, and the area 

between 3–8 x 104 km2. The temperature ranges for West African MCCs are generally colder 

than the Maddox (1980) criterion as they are adjusted to accommodate the deeper tropical 

atmosphere (Jobard & Desbois, 1994). West African MCCs propagate westward at ~12–15 ms-1 

towards areas of high equivalent potential temperature over the warm oceans (D’Amato & Lebel, 

1998; Lebel, Taupin, & D'Amato, 1997). 
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2.2.3 Identifying Mesoscale Convective Complexes 

Mesoscale convective complex (MCC) identification (and identification of large-scale 

mesoscale convective systems (MCS) features) utilizes a spatial-temporal criterion that requires 

high-resolution (30-minute to 3-hourly) geostationary weather satellite data (Maddox, 1980a,b). 

Specifically, MCC identification utilizes infrared (IR) imagery and visible (VIS) imagery. The 

IR satellite data provides the variable brightness temperature (TB), which provides information 

about the temperature of an object from which radiation is emitting, and also infers information 

about the altitude of the object. In general, the higher an object is from the surface, the colder its 

TB. Further, cold TB indicate cold cloud tops, with colder temperatures indicating clouds with 

vertical extent and convection. Desbois, Kayiranga, Gnamien, Guessous and Picon (1988) 

demonstrated that the 10.8 µm IR channel is good for monitoring deep convection, as the data 

from this channel represents the effective cloud top temperature (TB).  The VIS data is analogous 

to a black and white photograph of the Earth’s surface from space, and provides a means to 

validate the cloud types identified from the temperature data through analyzing shape 

characteristics of clouds.  This method is preferable as the spatial expanse of MCCs and 

variability in their convective characteristics make them difficult to characterize even in dense 

networks of radars and / or surface gauges.   

2.2.3.1 The Mesoscale Convective Complex criterion 

Maddox (1980b) provides a criterion for identifying mesoscale convective complexes 

(MCCs) in mid-latitudes based on spatial resolution of the cloud shield at a given temperature, 

the shape of the system, and the duration of the system (Table 2.2). An important aspect of the 

MCC identification criterion is the shape, defined as the eccentricity at the time of maximum 
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extent of the feature. The MCC is a quasi-oval / quasi-circular shape, the eccentricity is expected 

to be greater than 0.7. This is important because features that meet the other aspect of the 

Maddox (1980b) criteria, but not the shape criteria, are categorized as another MCS feature, such 

as squall lines (Anderson & Arritt, 1998) 

 Several modifications of Maddox (1980b) criterion for MCCs in West Africa were made. 

These include a version to account for a higher temporally resolved dataset by Laing and Fritsch 

(1993). Additionally, Houze Jr. (1993) produced a modified version that contains an additional 

characteristic stating that the cloudy area defined produces a contiguous precipitation area of a 

minimum 100 km in at least one direction Laurent, D’Amato and Lebel (1998) produced a 

version that reduces the spatial resolution thresholds to A – cloud shield with IR temperature ≤ 

233 K and an area ≥ 80,000km2, and B – cloud shield with IR temperature ≤ 213 K and an area ≥ 

30,000km2, to allow for better depiction of convective rain-producing clouds during the rainy 

season in the Sahel. Recent studies such as Goyens, Lauwaet, Schröder, Demuzere and Van 

Lipzig (2011), utilized the Laurent et al. (1998) criteria, making it feasible for this study (Table 

2.1). 

2.2.3.2 Methods to Identify Mesoscale Convective Complexes 

Studies of MCCs utilized manual, automated and / or semi-automated methods to identify 

MCCs according to a criterion. Approaches to these methods can be defined as Eulerian or 

Lagrangian (Schröder, König, & Schmetz, 2009). In the Eulerian approach, the areas of deep 

convection on the images are retrieved and stored as a function of spatial position according to 

the local solar time. A harmonic analysis is then applied on each spatial position within the time 

bins. In the more commonly used Lagrangian approach, the convection is tracked by considering 

an area of a given temperature overlap between successive images. 
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Initially the methods for identification were fully manual, implemented a Lagrangian 

approach and required both infrared (IR) images that supplied the cloud-top brightness 

temperature (TB) for providing cloud characteristics, and visible (VIS) images that verified that 

information. This was illustrated by both Velasco and Fritsch (1987) and García –Herrera et al. 

(2005). These manual method studies identified the characteristics of the MCC, their cold cloud 

shield areas and temperature, their duration and their lifecycle. However, the method is 

subjective, time-consuming and inconsistencies between observers in identification are likely.  

 The manual method evolved into semi-automatic methods that incorporated a human factor 

to corroborate the automatic implementation using VIS images in studies as seen in studies from 

Laing and Fritsch (1993), Blamey and Reason (2012). Automated implementations that do not 

require VIS imagery also evolved as seen with Carvalho and Jones (2001), Schröder, König, & 

Schmetz (2009), Vila, Machado, Laurent, and Velasco (2008). Automated methods employ 

algorithms to search time-series of infrared satellite images to identify systems. Although time-

efficient (in terms of human resources), this method can falter with the identification of splitting 

and merging systems between consecutive images. Semi-automated methods use computer 

programs to identify systems, and then manually corroborate, utilizing both IR and VIS images. 

The studies that implemented semi-automatic and automatic methods added to the knowledge 

base regarding the characteristics of MCCs according to location. Additionally, the studies 

started to explore the precipitation characteristics of MCCs through considering other IR bands 

and microwave bands that the satellite sensors provided. However, most of the existing and 

generally utilized semi-automatic and automated methods, such as Carvalho and Jones (2001) 

and Schröder et al., (2009), are based on some forward and backward in time algorithm that 

tends to be inefficient in terms of computer resources. More importantly, these methods often 
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falter when evolving cloud systems that may merge or split over time, and, thus, still require 

human invention.  

More recently, a fully automated method, called the Tracking of Organized Convection 

(TOOCAN) algorithm, has been introduced for identifying and tracking MCSs in meteorological 

applications (Fiolleau & Roca, 2013).  This method is based on clustering of similar brightness 

temperatures in sequential geostationary satellite images. The objective of the TOOCAN 

algorithm is to identify MCSs by associating areas of coldest brightness temperatures 

(convective seeds / cores) in sequential IR data through a clustering method that identifies the 

convective seeds (areas of deepest convection) according to a TB maximum threshold, then 

iteratively over temperature ranges (for example, 1 K variation) track the MCS from this radial 

point outwards in a 3-dimensional space (time, latitude and longitude) as a MCS. The TOOCAN 

algorithm addresses the concerns of previous MCSs tracking methods and adds value to 

meteorological applications involving MCSs, as it provides information about the core structure 

of the system, but although no algorithm analysis was provided intuitively the algorithm does not 

appear efficiently scalable to long-term datasets.     

Automated methods generally have two distinct stages: (1) the cloud detection or cloud 

masking stage, and (2) the tracking or evolution stage. The cloud detection or cloud-masking 

stage involves reducing a full IR satellite dataset to only the cloud areas of interest, by imposing 

temperature, and area or volume restrictions.  The tracking stage evolves small MCSs into 

MCCs.  

The cloud detection stage is defined by imposing a temperature-area (or volume) criterion 

that varies according to the particular MCS and the location study. (Note that the TOOCAN 

algorithm does not impose a temperature criterion.) The temperature ranges from a 255 K 
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temperature threshold to identify precipitating areas in large MCSs, to a 195 K temperature 

threshold to identify the convectively most active parts of the system (Desbois, Kayiranga, 

Gnamien, Guessous & Picon (1988); Duvel, 1989; Fiolleau & Roca 2013; Machado, Rossow, 

Guedes, & Walker (1998); Mapes & Houze, 1993). The area ranges from 2400 km2 to 5000 km2 

for MCC development (and large MCSs) (Machado & Laurent, 2004; Mathon & Laurent, 2001; 

Vila et al., 2008). Further, smaller area cut-offs tend to produce too many cloud areas from the 

cloud masking area process that are of no consequence to the MCC identification. Mathon and 

Laurent (2001) showed that cloud areas (MCSs) of size larger than 5000 km2 and temperature 

thresholds of 253 K, 235 K and 213K did not affect the total number of tracked MCCs in West 

Africa. For the same location, Machado and Laurent (2004) successfully used a cut off area of 

convection, sized 3500 km2 with a TB of at least 233 K, for successive images a maximum of two 

hours apart, while Goyens, Lauwaet, Schröder, Demuzere & Van Lipzig (2011) used the same 

size for images 30 minutes apart. As such, the minimum cloud area criterion required to evolve 

into a MCC in West Africa is an area 3500 km2, with a brightness temperature of at least 233 K. 

Problems have been identified with these approaches from a meteorological (short time scale) 

perspective. The issues include temperature thresholds may not delineate the edges of the cloud 

systems clearly, area cutoffs may discredit valid systems, the convective portion of the cloud 

may not necessarily be identified, and irrelevant data storage (Chaudhuri & Middey, 2009; 

Chaudhuri & Middey, 2011).  

The tracking approaches existing within the literature, include maximum spatial correlations 

as illustrated by Carvalho and Jones (2001), a Lagrangian approach based on projected centroid 

location as outlined by Johnson et al., 1998, propagation speed of criterion as shown by 

Woodley, Griffith, Griffin, and Stromatt (1980) and Machado, Rossow, Guedes, and Walker 
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(1998), maximum overlap area as demonstrated by Laurent, D’Amato, and Lebel (1998), a 

global cost function to enforce shape and path characteristics, pointed out by Chaudhuri and 

Middey, (2011), and greedy optimization of overlap areas as exemplified by Dixon and Wiener 

(1993). For example, in West Africa, Machado et al. (1998) determined the speed between 

MCCs of successive images be no more than 19.5 ms-1. The maximum spatial correlation 

involves finding the region of maximum spatial correlations between successive images, whereas 

the area-overlap method considers the maximum overlap of areas between the successive 

images. As an MCS evolves overtime, a number of evolution stages can occur between 

successive IR images (Figure 2.7). Specifically, systems may increase in size (grow), decrease in 

size (decay), remain the same size (maintain), become more than one system (split), amalgamate 

two or more MCSs (merge), or a new feature may appear. Machado et al. (1998) determined the 

overlapping tracking method efficiently evolves systems based on these characteristics but with 

careful consideration for the time between successive images (three hourly images) and the 

parameters to track the systems. This area overlapping tracking approach is thus more efficient 

than the spatial correlation method, which usually falters with merging and splitting systems 

(Blamey & Reason, 2012). However, the most common method used in automated tracking 

algorithms is the area-overlapping method (Schröder, König, & Schmetz, 2009; Goyens, 

Lauwaet, Schröder, Demuzere, & Van Lipig, 2011).  
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Figure 2.7. Schematic of the possible fates of MCSs between successive infrared satellite 

images. 

!
In general, the existing semi-automated and automated methods are based on forward-

backward in time algorithms as sequential data images are considered in the tracking stage. 

Maximum Spatial Correlation Tracking Technique (MASCOTTE) algorithm, which is 

implemented in Interactive Data Language (IDL), evaluates the evolution of one MCS (for 

example, one MCC) throughout the time of the dataset at a given iteration (Carvalho & Jones, 

2001). This approach requires large computer memory to retain the entire data and copies of the 

dataset, whilst the program is operating. Thus, for large areas or long-term datasets, this can 

become a very computationally expensive method. The Schröder, König, & Schmetz (2009) 

method is based on an overlapping of 5 percent between successive images, better allowing for 

splitting and merging of events. The algorithm commences by identifying areas of interest via 

the cloud masking stage. Once these areas have been identified, the algorithm backward-steps to 

determine if a given contiguous area meets the overlap criteria. If it does, it continues to step 

backwards in time until the minimum criteria for deep convection is not found. Once this is 

found, the algorithm then checks forward in time for the development of the system until a 5 

percent overlap cannot be found. It then stores the MCC information and moves on to the next 

one in the domain (a brute force approach). In general, from the existing methods, it is 

demonstrated that a method that efficiently handles the data for long-term records is required.  
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2.2.3.3 Determining the Rainfall Amounts Associated with Mesoscale Convective 

Systems 

Quantifying the amount of surface precipitation associated with a particular mesoscale 

convective system (MCS) or mesoscale convective complex (MCC) is challenging, given the 

small spatial and temporal resolution of the feature and thus the dense rain gauge network that 

would be required. Precipitation derived from satellite data, such as infrared and microwave data, 

can help determine cloud characteristics and precipitation rates of features in West Africa. Jobard 

and Desbois (1992) demonstrated that precipitation estimates from convective features based on 

IR images alone are insufficient as infrared radiances alone provide information about the cloud 

cold top temperatures but not the precipitation. They further demonstrated that rainfall estimates 

from the combination of IR and microwave data was more accurate for the West Africa location. 

Nicholson et al. (2003a) found that IR and microwave datasets displaced the rainfall belt 

northward of the gauge measurements that were taken as truth for the period June-July-August 

1988–1994. Furthermore, the rainfall captured by the microwave-based data was unable to 

capture the rainfall maximum associated with climatological features such as orographic rainfall. 

Nonetheless, Laing, Fritsch and Negri (1999) determined the average rain area associated with 

Sahelian MCCs is 285,000 km2, with an average rainfall of 34 mm, through a relationship they 

established between microwave-derived precipitation data and IR data.   

A potential satellite dataset that can overcome the limitations of rainfall estimates as outlined 

is the NASA Tropical Rainfall Measuring Mission (TRMM) dataset, which provides the 

distribution of rainfall within the tropics through combining data from various satellite 

instruments1. The TRMM composite dataset has been available since 1997. Nicholson et al. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 http://trmm.gsfc.nasa.gov/  
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(2003b), using TRMM data, found that the TRMM (3B43) merged datasets formed from 

combining the data from the instruments, performed well showing excellent agreement with 

gauge data over West Africa on monthly to seasonal timescales and at the 25km spatial 

resolution, but individual components such as the precipitation radar (PR) or the TRMM 

microwave imager (TMI) over-estimated rainfall and did not perform well.  

TRMM data can also be used to monitor the vertical structure of precipitation features as 

illustrated by Jenkins (2000). Nesbitt, Cifelli, and Rutledge (2006) used satellite data, 

specifically TRMM version 6 data, to associate the vertical and horizontal structure of 

precipitation features (including MCCs) in the tropics with rainfall characteristics such as 

precipitation rates. They used visible and infrared scanner (VIRS) and TMI reflectivity to 

identify brightness temperatures and correlated with PR and Lightning Imaging Sensor (LIS) 

data. They found the VIRS and TMI data provided larger, more uniform coverage whereas the 

PR and the LIS composite data provided better demarcations of the heavy precipitation. Nukilin 

et al. (2012) determined that for hourly resolved rainfall, there was no value added by using 

microwave data verses IR data within the TRMM data.  

Isolated studies allowing for distinctive features regarding MCCs have also been resolved via 

satellite data. For example, Goyens, Lauwaet, Schröder, Demuzere, and Van Lipzig (2011) 

determined from METEOSAT-8 IR images and TRMM, that large-scale MCSs features in the 

Sahel region are approximately 57,000 km2 (duration nine hours with an embedded core lasting 

six hours) with a precipitation peak of ~12.3 mm hr-1. Goyens et al. (2011) utilized an automatic 

Lagrangian MCC method in their study, specifically the method employed by Schröder, König 

and Schmetz (2009), and manually compared the identified MCCs with similar areas in TRMM 



!

36 

data. Currently, there are no automated methods for determining precipitation characteristic of 

MCSs or MCCs from satellite data. 

2.3  Data mining, management and distribution 

Data mining derived out of the “data rich, but information poor” era and refers to the process 

of discovering patterns in big data to extract data and transform it to an understandable structure, 

for example a relational database or a graph, for taking out information (Han, Kamber & Pei, 

2006). Information retrieval has lead to data distribution and management related problems, for 

example, issues related to how to store data in databases for ease of access and retrieval.  One 

implementation to this data management and distribution problem is the Apache Object Oriented 

Data Technology (OODT) which is a framework of distributed objects and databases that allows 

for seamless management, manipulation, analysis, and visualization of distributed stored data 

(Mattmann et al., 2009). For example, in the climate science application of the Regional Climate 

Model Evaluation Database (RCMED), Apache OODT employs other ASF projects, namely 

Apache Hadoop (White, 2012), Apache HIVE (Capriolo, Wampler & Rutherglen, 2012), and 

Apache Sqoop (http://sqoop.apache.org/). The required services from Apache Sqoop for 

efficiently and effectively transferring of bulk data between structured data stores, and Apache 

Hive for facilitating efficient processing data that is distributed between data stores, are wrapped 

up in Apache OODT’s framework (Mattmann et al., 2013).  

Data mining activities have evolved into graph mining where graphs are used as the structure 

of data mining activities. A graph is similar to a network with a number of points, called vertices, 

and a number of lines, called edges (Trudeau, 1993). The complexity of a graph is determined by 

the number of vertices and edges between them, within the graph.!Graph mining – data mining 

leading to graph formation – and distribution is increasing in popularity in various fields leading 
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to numerous graph designs and complexities of implementation (Aggarwal & Wang, 2010). For 

example in chemical application, atoms may be considered as nodes and bonds as edges. As the 

application varies, the underlying mining algorithm changes, hence from a strictly computer 

science algorithms design perspective, this has become a quickly growing field of interest.  
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CHAPTER 3. DATASETS AND TOOLS 

Satellite (remotely sensed) datasets are commonly used in studies contributing to current 

scientific understanding and prediction of rainfall characteristics and variability, as these datasets 

provide a reasonable spatial and temporal resolution of the observed precipitation characteristics. 

Such datasets can be seen in works by Adler, Negri, Keehn, and Hakkarinen (1993), Smith, 

Mugnai, Cooper, Tripoli and Xiang (1992), Mugnai, Smith and Tripoli (1993), Mathon, Laurent 

and Lebel (2002) and Goyens, Lauwaet, Schröder, Demuzere, and Van Lipzig (2011). Satellite 

datasets are inherently large as they cover large spatial areas and are generated frequently. As 

such, satellite datasets fall into the category of big data – datasets that are voluminous, contain 

various formats and are required at high speeds (Jacobs, 2009). Arnaud, Desbois and Maizi 

(1992) highlighted the big data issues related to using long term records of satellite data for 

identifying mesoscale convective systems (MCSs). Two decades later, the big data issue 

continues to be a hindrance and has escalated with the increased number of satellite missions and 

model data, which is sometimes used in retrieval methods and / or composite datasets, thus 

contributing to the sum of data (Mattmann, 2013; Overpeck, Meehl, Bony, & Easterling, 2001).  

3.1 Satellite Datasets for Characterizing Mesoscale Convective Systems in West Africa 

The data from each type of weather satellite dataset provides a set of properties that allow for 

distinguishing between cloud forms and / or morphology. As aforementioned, the identification 

of mesoscale convective complexes (MCCs) (and mesoscale convective systems (MCSs)) 

depends on infrared (IR), and sometimes visible (VIS), satellite data. Details about the rainfall 

associated with MCCs (and MCSs) depend on IR and Microwave (MW) satellite dataset.  
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Satellite datasets are referred to as remote sensed data. Remote sensed data involves the 

interpretation and inversion (calculation) of radiometric measurements of electromagnetic 

radiation (Figure 3.1) that were measured some distance away (in this case by a sensor onboard a 

satellite). Remote sensed data can be further categorized into active and passive remote sensing. 

Active remote sensing uses an artificially generated source of radiation to determine the 

attenuation of the beam between the transmitter (where the radiation originates), and the detector 

(the sensor that reads the radiation). Passive remote sensing uses natural sources of radiation 

from the Sun or radiation from within the climate system. In both active and passive sensing, 

attenuation of the electromagnetic radiation beam may occur due to one or a combination of the 

transmission, scattering, reflection and absorption.  

 

 

 

Figure 3.1. The Electromagnetic Spectrum (Laing and Evans, 2011). 

 

The wavelengths at which the sensors onboard the satellite measure the radiation are 

analogous with the dataset. In atmospheric studies, the range of radiation, from the ultraviolet 

through to the microwave wavelengths, is useful. Furthermore, infrared and microwave sensed 
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radiation are most useful in this study. The reader is directed to Liou (2002) Chapter 7 and Laing 

and Evans (2011) for further details on satellite retrieval methods. 

3.1.1 Satellite Data for Identifying Cloud Characteristics – Infrared Satellite Data 

The infrared (IR) satellite data provides information about the extinction of the emitted IR 

radiation by a medium (the surface), assuming a non-scattering environment in local thermal 

equilibrium. IR sensors usually fly onboard geostationary satellites at a height ~36,000 km above 

the Earth’s surface, so as to maintain a fixed view of an area (~42 percent of the globe) at a time, 

allowing for continuous monitoring of that location.  IR sensors also employ passive remote 

sensing methods. The satellite sensor detects within the thermal band (10-12µm) of the 

electromagnetic spectrum, and observes downwards to the surface (or as far as possible) in a 

narrow cone, with the tip of the cone originating at the local vertical of the instrument. The IR 

sensor observes a particular location continuous in space and time, irrespective of the time of the 

day. IR data provides the variable brightness temperature (TB) that gives information about the 

cloud temperature and altitude, where, as a general rule, the colder the object, the larger the 

altitude. TB is uniquely related to the (sensed) wavelength. 

The weather IR satellite instruments provide information about the cloud top temperature, 

irrespective of the time of the day, as IR radiation is consistently being emitted by the Earth-

atmosphere system. As the intensity of the IR radiation reaching the satellite sensors depends on 

the warmth of the object emitting that radiation, interpretation is such that most intense radiation 

comes from warmer objects such as the Earth’s surface, while cooler objects such as clouds emit 

less radiation. The satellite image may be represented as grayscale (warm areas are darker, colder 

areas are whiter) or false color. In general, interpretation of IR satellite data provides further 

information about the cloud type, shape, morphology and other characteristics. Additionally, the 
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limitations of visible imagery (VIS) are addressed in IR images. Hence, many studies have used 

the IR data in identifying cloud systems. However, within the IR dataset, the limitation of the 

wavelength dependence of TB for studies exists.  

In weather applications, IR satellite data can be used for identifying and characterizing 

weather features, and estimating precipitation specifically from convective clouds, as convective 

cloud tops are higher, and thus correlate with high precipitation rates. Using IR data for 

precipitation estimation requires that the TB are averaged over location and time, then compared 

to precipitation measurements (for example, rain gauge measurements). Though there are 

advantages to this technique, major limitations arise regarding the resolution of the satellite 

sensor being too coarse to capture convective-scale structures (as they develop or that embedded 

in mature systems), and inherently would not handle precipitation from warm clouds. 

3.1.1.1 The Infrared Brightness Temperature Dataset Used 

Desbois, Kayiranga, Gnamien, Guessous, and Picon (1988) demonstrated that the IR 10.8 µm 

channel is good for monitoring deep convection, as the data from this channel represent the 

effective cloud top temperature (TB). Previous studies, such as Laing and Fritsch (1993) have 

utilized the METEOSAT IR images from the International Satellite Cloud Climatology Project 

(ISCCP) B3 stage radiance data. The METEOSAT is a geostationary meteorological satellite, 

operated by the European Organisation for the Exploitation of Meteorological Satellites 

(EUMETSAT), with multiple series. The instrument onboard for sensing is the Spinning 

Enhanced Visible and Infrared Imager (SEVIRI) that has the capacity to observe in 12 spectral 

channels – four visible and near IR channels, and eight infrared channels1. The IR images used 

for cloud detection are the IR 9.7, 10.8, and 12.0 µm. These images are temporally resolved 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 http://www.eumetsat.int/Home/Main/Satellites/MeteosatSecondGeneration/Instruments/index.htm 
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every 30 minutes. Spatial resolution varied according to the series of METEOSAT, but is 

currently ~5 km.  

The National Centers for Environmental Protection (NCEP), the Climate Prediction Center 

(CPC), and the National Weather Service (NWS) created a global dataset (between 60 °N – 60 

°S) composite infrared dataset from data collected by sensors onboard various geostationary 

satellite platforms, including NASA GOES-8/10, EUMETSAT METEOSAT-7/5 and Japan’s 

Geostationary Meteorological Satellite (GMS). The GOES-8/10 flies a five-channel imager 

onboard that dedicates one channel to visible wavelengths and the other four to infrared 

wavelengths. The channel used for detection of mesoscale features in synoptic disturbances is 

Channel 4 (10.2–11.2 µm spectral band). The GMS carries the Visible and Infrared Spin Scan 

Radiometer (VISSR), collecting data every 30 minutes in the visible 0.50–0.75 µm spectral band 

at 1.25 km resolution, and infrared 10.5–12.5 µm band at 5.0 km resolution. All the data from 

these various platforms are corrected for the varying zenith angle of each of the contributing 

satellite sensors and provided at a 0.036° or 4 km spatial resolution and 30-minute temporal 

resolution. Also referred to as MERG2 dataset, it is the preferred dataset for this study. 

The MERG dataset is available from February 7th, 2000 to present. The area of West Africa 

as defined by satellite images requires consideration of the curvature of the Earth’s surface and 

viewing angles. Low viewing angles usually require large adjustments that can be potentially 

problematic within studies. Issues related to low viewing angles, such as the issue that Laing and 

Fritsch (1993) experienced with METEOSAT data for latitudes exceeding 20°, are avoided here 

through utilizing the MERG dataset (as the correction has been already made). For this study, 

hourly MERG data, on the hour, (that is ‘:00’) will be utilized, as this temporal resolution is 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 http://mirador.gsfc.nasa.gov/collections/MERG__001.shtml 
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sufficient for identifying and tracking large MCSs features (Goyens, Lauwaet, Schröder, 

Demuzere, and Van Lipzig, 2011).  

3.1.2 Satellite Data for Precipitation Characteristics 

3.1.2.1 Microwave Satellite Data 

Microwave (MW) satellite sensors directly detect liquid and / or ice particles and 

precipitation within the range of size from 10 to 100 micrometers (µm) throughout the depth of 

the atmosphere, which immediately makes MW datasets superior to IR satellite inferred 

precipitation datasets. MW instruments fly onboard polar-orbiting satellites or low-orbiting 

satellites and employ both passive and active forms of sensing. Thus, the sensors cover the globe 

in swaths of a given width, repeating a swath area every ~12 hours. An example of the final 

product is provided for two MW sensors in Figure 3.2. 

 

 

 

Figure 3.2. Global microwave coverage from sensors onboard various satellites whose 
swaths are represented by the different colors. The white areas indicate regions where no 

measurements are made (Laing and Evans, 2011). 
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 The MW sensor cannot detect continuous throughout the range, hence several discrete MW 

wavelengths, which are usually described by their frequency in gigahertz (GHz) as opposed to 

wavelength, are chosen. These are referred to as channels (Figure 3.3).  

 

 

 

Figure 3.3. The electromagnetic spectrum highlighting the microwave portion and its 
absorption in the Earth’s atmosphere (Laing and Evans, 2011). 

!
!
!
!
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On weather satellite instruments, channels are chosen such that some are located in the 

atmospheric window regions – areas where atmospheric gases absorb very little radiation, and 

some are located where there is high absorption – in the MW region of the electromagnetic 

spectrum only water vapor and molecular oxygen exhibit significant absorption (Figure 3.3). By 

doing this, the sensor can observe the surface without interference (even in the presence of 

physical objects such as clouds) in the window channels, and compare these results with the 

channels from high absorption to derive surface, cloud and precipitation properties. 

Similar to infrared (IR) data, the characteristics that can be determined about cloud and 

precipitation in MW data vary according to the channel (radiation wavelength). In the 85–91 

GHz channel, deep convection appears as a cold area, and water clouds and air masses with high 

water vapor content (but not yet clouds) are observed even over water surfaces, as areas with 

warm brightness temperatures. The data from the 85–91 GHz channel also provides information 

below thin cirrus clouds, and can distinguish deep convection areas, even though it may not be 

able to penetrate deep within the convective region to determine low-level structure as the MW 

is attenuated. The 37 GHz channel is a higher resolution channel to the aforementioned channel 

that shows water clouds and precipitating clouds as warmer against a colder ocean, and brings 

low-level cloud and rain features to the foreground as the measured upwelling MW radiation is 

mostly unaffected by ice particles. The 10 GHz channel provides detailed information about 

precipitation intensity, especially in locations of high precipitation rates.  

The MW datasets provide a high spatial resolution but low temporal resolution of data, 

because the low-orbiting satellite platforms. To circumvent this shortcoming, some satellite 

precipitation estimates have combined MW measurements with estimates from IR, which 

provide a higher frequency.  
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3.1.2.2 The Precipitation Satellite Dataset Used in this Study 

Satellite data from the Tropical Rainfall Measuring Mission (TRMM), - a mission between 

NASA and the Japan Aerospace Exploration Agency (JAXA), provide the distribution of rainfall 

within the tropics through combining data from various instruments3, and is used in this study. 

TRMM was launched in 1997 on an equatorial orbit, staying between 35 degrees north and south 

of the equator. There are five instruments on board:  

1. The TRMM precipitation radar (TRMM-PR): an active microwave sensor designed to 

support three-dimensional views of cloud and storm structure. The PR swath is 220 

km;  

2. The TRMM microwave imager (TRMM-TMI): a passive microwave remote sensor, 

with a 750 km swath that quantifies water vapor, cloud water and rainfall intensity;  

3. The TRMM visible and infrared scanner (TRMM-VIR): a passive five-channel cross-

track scanning radiometer in the visible and infrared spectrum; 

4. A Cloud and Earth Radiant Energy Sensor (CERES): CERES instruments are passive 

remote sensors that measure both within the visible and infrared wavelengths. The 

original CERES that flew onboard the TRMM satellite only operated from January to 

August 1998, and March 2000; 

5.  The Lightning Imaging Sensor (LIS): a high-resolution passive remote sensor 

measuring lightning strikes in the visible spectrum.  

The three-hourly TRMM 3B42 dataset is a merged high quality / IR precipitation and root-

mean-squared precipitation error estimate. The dataset is produced from the multiple TRMM 

sensors and IR-precipitation estimates from sensors on other satellites. This composite dataset is 

prepared in two major and distinct steps. The first step combines the TRMM VIRS and TRMM 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3 http://trmm.gsfc.nasa.gov/  
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TMI (1B01 and 2A12 product, respectively) orbit data with the monthly TMI / TRMM 

Combined Instrument (TCI) calibration parameters (3B31 product), to obtain monthly IR 

calibration parameters. In the second step, the outputs from the first step are used to adjust the 

merged-IR precipitation data. The TRMM 3B42 version 7 dataset is available at a 0.25° (~25km) 

resolution every three hours. Combining the IR and the MW data in this product allows for better 

coverage of features. Table 3.1 provides a summary of the data characteristics of the datasets to 

be used in this study. 
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Table 3.1.  A summary of the data characteristics of the remote-sensed datasets used in this 
study4,5,6 . * indicates the actual variable to be analyzed. 

!
!
TRMM 3B42v7 Data characteristics 
Characteristics   Temporal Coverage 1998-01-01 to Present 
 Temporal resolution 3-hourly 
 Geographic Coverage 50°S - 50°N, 180°W - 180°E 
 Spatial resolution 0.25°x0.25° (nlat = 400, nlon = 1400) 
Contents Precipitation* TMPA precipitation estimate. Units: mmhr-1  
 relativeError TMPA random error estimate. Units: mmhr-1 
 HQprecipitation Pre-gauge adjusted MW precipitation estimate at 

each 0.25° x 0.25° box. Units: mmhr-1 
 IRprecipitation Pre-gauge-adjusted IR precipitation estimate at 

each 0.25°x0.25° grid box. Units: mmhr-1 
 satObservationTime Satellite observation time minus the time of the 

granule of each 0.25°x0.25° box. Units: minute 
Globally merged Full Resolution IR Brightness Temperature data (MERGv1) 
Characteristics   Temporal Coverage 2000-02-07 - present 
 Temporal resolution 1-hrly (30 min) 
 Geographic Coverage 60°S - 60°N, 180°W - 180°E 
 Spatial resolution 0.036° x 0.036° (4km) (pixel resolution) 
Contents Brightness temperature* Kelvin 
  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4 http://disc.sci.gsfc.nasa.gov/precipitation/Globally_merged_IR.shtml 
5 http://disc.sci.gsfc.nasa.gov/daac-bin/DataHoldingsPDISC.pl?LOOKUPID_List=MERGED_IR 
6 http://disc.sci.gsfc.nasa.gov/precipitation/documentation/TRMM_README/TRMM_3B42_readme.shtml/ 
!
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3.2 The Regional Climate Model Evaluation System and the Apache Open Climate 

 Workbench  

Satellite datasets are somewhat difficult to use because they have varying spatial and 

temporal resolutions, and are stored in non-homogenous formats. Furthermore, satellite datasets 

are inherently large as they cover large spatial areas and are generated frequently, usually in the 

order of minutes. Thus, this project requires big data management methods. 

Within the atmospheric sciences, big data management problems also occur with climate 

model evaluations. Predictions from climate models (global and regional) and observation data 

are necessary for informing decision-making processes related to climate impacts from both 

natural and anthropogenic climate change. However, before a climate model prediction can be 

used in the decision-making process, the model needs to be validated. A significant portion of 

validating models is to evaluate their outputs to a historical period of observed data to determine 

model biases 

The Regional Climate Model Evaluation System (RCMES, http://rcmes.jpl.nasa.gov/) is a 

tool that was developed by National Aeronautics and Space Administration (NASA) Jet 

Propulsion Laboratory, California Institute of Technology (JPL), and their Joint Institute for 

Regional Earth System Science and Engineering (JIFRESSE) with the University of California, 

Los Angeles (UCLA) to inherently handle big datasets in the Earth Sciences. RCMES seeks to 

improve access to existing quality-assured long-term climate observations for the evaluation of 

regional climate projections through the inclusion of NASA remotely-sensed observations. 

RCMES allows for the evaluation of regional (and global) climate projections, the facilitation of 

seamless evaluations with datasets from various sources, and the promotion of better assessments 

of climate impacts, vulnerabilities and risks to natural and anthropogenic climate change for 
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various sectors (Whitehall et al., 2012). As the RCMES project evolved, aspects were donated to 

the Apache Foundation through the Open Climate Workbench project (Apache OCW, 

http://climate.apache.org/).  The Apache OCW and RCMES project have evolved such that 

Apache OCW has developed and made available the inner methods of RCMES in a succinct 

modular format that identifies the purpose of various functions as they relate to big four 

dimensional datasets (time, latitude, longitude and variable). In addition, RCMES can now be 

viewed as an application of Apache OCW.  

3.2.1 The Regional Climate Model Evaluation System  

RCMES consists of two components: the Regional Climate Model Evaluation Database 

(RCMED) and the Regional Climate Model Evaluation Toolkit (RCMET) (Figure 3.4).  

 

 

 

Figure 3.4. Schematic of RCMES. Adapted from Mattmann et al. (2013). 
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RCMES was designed for a workstation / PC environment, and on that account, the RCMET 

data access component quite cleverly stores data accessed from RCMED locally on the user’s 

system, in a compressed format, based on the assumption that the user will access these data 

constantly for any respective studies (Hart et al., 2011). In that manner, time taken to access the 

database is significantly reduced, especially for those instances where Internet speeds are 

nominal. Additionally, this feature allows for the offline usage of RCMES. RCMED is a 

collection of PostgreSQL databases inclusive of NASA’s remotely-sensing data such as TRMM, 

reanalysis data, and other observations, such as University of East Anglia Climate Research Unit 

datasets (CRU), that facilitates data classification, extraction and homogeneity, irrespective of 

the original data format. Examples include NETCDF 3/4, GRIB, and HDF 4/5. RCMED 

physically resides at JPL, and it easily accessible via RCMES (Crichton et al., 2012). Ahead of 

an evaluation, users may be required to load their data into RCMED.  RCMET provides the 

capabilities of regridding, calculating evaluation metrics such as root-mean-squared (RMS), bias 

and correlation coefficients, and visualizations of the data. RCMET’s flexibility allows users to 

(1) change the workflow of an end-to-end evaluation, (2) supplement with their metrics, and (3) 

extract data during the evaluation (Mattmann et al., 2013).   

Integrating this research into RCMES would allow for search-and-clip functionality based on 

relationships between variables over time from one or more datasets to be added. Integrating in 

RCMED side will allow for clipping of the dataset in the database when it is requested, before 

transfer, which is advantageous for two reasons. Firstly, it will allow for services in RCMED to 

be utilized in the execution of the actual search-and-clip function, and secondly, it will allow for 

a smaller dataset to be transferred, thus reducing the time it takes to acquire a dataset. Adding the 

search and functionality into RCMET will allow its functionality to be used locally on the user’s 
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system with user datasets (possibly not ingested into RCMED), and then request those clipped 

regions from RCMED in other datasets. The scope of this research considers the integration on 

the RCMET side.  

3.2.2 The Apache Open Climate Workbench  

The Apache Open Climate Workbench (Apache OCW) is an open-sourced Python-based 

climate evaluation toolkit that can be found within the Apache Software Foundation (ASF). 

Apache OCW is an ASF Top-Level Project, which is an endorsement statement from the ASF 

that signifies the project meets ASF’s best practices. It is being used (and contributed to) by 

various organizations and universities including the National Aeronautics and Space 

Administration (NASA), the Coordinated Regional Downscaling Experiment (CORDEX) 

community, the Indian Institute for Tropical Meteorology, and the University of Cape Town, 

South Africa. The Apache OCW toolkit accesses observation data and model outputs from 

various organizations such as NASA, National Oceanic and Atmospheric Administration 

(NOAA), and the Earth System Grid Federation (ESGF). 

Apache OCW was born out of the refactoring of RCMES code and donating that code to 

ASF. Through the refactoring process, the RCMES code was reconstructed (without changing 

the high-level functionality) to improve aspects of software development such as code 

readability, reducing complexity of functions by breaking them down to basic functionality and 

reducing dependency, and improving the code maintainability and extensibility. Apache OCW 

maintains the high-level functionality of RCMES, but allows the user greater flexibility in 

creating individual project workflow. From the refactoring process, Apache OCW contains the 

basic representation of RCMES – the “nuts and bolts” – in a reusable fashion for developers. 

Basically, Apache OCW allows users to build other applications that require the underlying 
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functionality of data extraction, manipulation, calculations, and visualization, and RCMES is an 

example of such an application. Furthermore, as Apache OCW is an open-sourced ASF project, 

users can contribute methods that are applicable to the overarching objective of the project. 

Some examples include creating various interfaces for performing evaluations such as a user 

interface (UI) and command line interface, a plotting application programming interface (API) 

and provision of methods to handle datasets that may be local to the user.  

Given the relationship between Apache OCW and RCMES, it follows that overarching 

functionality between RCMES as a database and a toolkit, and Apache OCW are quite similar, 

but the distribution of the actual code (the software architecture) would vary.  

The source code structure provides information as to how the software components within a 

software application should interact with each other. The Apache Open Climate Workbench 

(OCW) source code structure defines the set of files contain the classes or objects and the 

associated class methods, as well as their interactions in a quick and simple readable format 

(Figure 3.5). This facilitates users being able to quickly determine what is available from the 

project, and how to access or use that functionality.  
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Figure 3.5. The Apache OCW Source Code Structure. 7 

 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
7!http://climate.apache.org/index.html!
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The Apache OCW provides methods on data extraction in the local.py file. Methods from 

this file are used in this project for extracting the satellite data into a common format. The 

dataset-processor.py file contains methods on regridding that are leveraged in this study. The 

metrics.py file provides methods on calculating metrics such as time and space averages, and 

standard deviations. Further, the plotter.py file contains methods for visualizing the metrics 

calculated based on the Python matplotlib library (Hunter, 2007). Methods from these two 

sources are also used in this study. Based on the API construct, it is expected the code from this 

project can be added to the Apache OCW through contributions of a new file that would sit in the 

main ocw folder (a file similar to evaluation.py). Additionally, metrics and visualizations 

developed in this study can be contributed to the metrics.py and plotter.py method collections 

respectively.  
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CHAPTER 4. A FULLY AUTOMATED SPATIO-TEMPORAL SEARCH FOR 

MCCs IN SATELLITE DATA  

The framework for an automated tool to identify mesoscale convective systems (MCCs) 

addresses the limitations related to human intervention and handling voluminous data. From 

Chapter 2 it was observed that human intervention is paramount in past studies of MCCs for (1) 

identifying systems with complex evolutions (2) identifying precipitation characteristics. 

Removing this human intervention involves creating a method that addresses the aforementioned 

limitation. The method proposed here is based on the workflow of existing methods, but also 

incorporates a method in mathematics and computer science – graph theory – that reduces the 

demand on computation resources, amongst other advantages.  

4.1 Graph Theory in the Atmospheric Sciences 

In discrete mathematics and computer science, graph theory is used to model the 

relationships between objects (Trudeau, 1993). Graph theory refers to the study of these graphs 

and networks, where graphs are considered as objects, or more generally, a data object. Graphs 

naturally model the relationships and process dynamics in physical, biological and social 

systems, as well as naturally represent networks of communication and data organization. Graph 

theory involves determining the characteristics of graphs, such as their interconnectivity and 

traversal, as well as ways in which their structure (nodes and / or vertices) can be combined and 

arranged. Historically, graph theory has been heavily utilized for problems that require mapping 

functionality, like determining the best (shortest path and lowest cost) route for air travels on 

travel websites, timetabling / scheduling, and by telecommunication companies for development 

and maintenance of their network.  
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Graph theory, though not commonly implemented in the atmospheric sciences, has been used 

for the predicting (nowcasting and forecasting) of thunderstorms. Implementation of graph 

theory in the atmospheric sciences involves considering the relationship between atmospheric 

variables at a given time, or the spatial-temporal analysis of cloud volumes. In the first case, the 

vertices or nodes of the graph are considered to be the measured quantities in the atmosphere 

related to thunderstorm development, at a given time and atmospheric level, whereas the edges 

are the correlation between these variables. Chaudhuri and Middey (2009) and Chaudhuri and 

Middey (2011) illustrated this type of application. In the second method, combinatorial 

optimization of graph theory is implemented. The nodes of the graph represent a unique cloud 

mass at a given time, whereas the edges indicate correlation between cloud masses over time, as 

illustrated by Dixon and Wiener (1993) and Mukherjee and Acton (2002). In general, 

implementing graph theory in the domain of the atmospheric sciences appears to be innately 

applicable to the complexity, non-linearity and inherent chaos of the atmospheric system.  

4.2 The “Grab ‘Em, Tag ‘Em, Graph ‘Em” Algorithm for Tracking Mesoscale 

 Convective Complexes 

The algorithm developed for this study is coined to as the “Grab ‘em, Tag ‘em, Graph ‘em” 

(GTG) algorithm. The GTG algorithm is based on the science of mesoscale convective system 

(MCS) identification, as implemented in previous studies but utilized graph theory. The graph 

theory used involves mostly using the graphs as an object along with some graph methods such 

as Dijkstra’s shortest-path search (Dijkstra, 1959).  

The “Grab ‘em, Tag ‘em, Graph ‘em” (GTG) algorithm, like most automated (and semi-

automated) algorithms for MCS identification, comprises of two main steps: (1) the cloud 

masking or cloud detection stage, and (2) the cloud tracking or evolution stage. The cloud 
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detection stage (as explained in Section 2.2.3.2) utilizes infrared (IR) satellite data and depends 

on brightness temperature (TB) and area thresholds to identify regions of interest that could 

develop into various MCSs. These regions are referred to as cloud elements (CEs). The GTG 

algorithm uses a temperature threshold of 241 K for CE identification such that values warmer 

than the threshold are discarded and those colder are equal to it are maintained for analysis. This 

temperature is the criteria used for Maddox (1980b) outer shield, and is maintained here because 

it has been shown that warmer temperatures are associated with a precipitating shield in well-

organized mesoscale systems (Adler & Negri, 1988). The GTG algorithm also uses an area 

cutoff of 2,400 km2 in conjunction with the TB threshold. This means that all contiguous areas 

where the TB is less than or equal to 241 K are considered as area of interest to develop into an 

MCS. A further consideration, mirroring the scientific premise of Bouniol et al., (2010), 

considers areas smaller than 2,400 km2 where the TB range within the potential identified 

contiguous area is at least 10 K. In this algorithm, each image of data is referred to as a frame 

(F). Each frame is a function of latitude, longitude and brightness temperature (TB).  

!! = !"#, !"#,!!  

Within each frame, a number of cloud elements (CEs) exists. The properties of a CE in the 

region of interest in this study, as illustrated by Goyens, Lauwaet, Schröder, Demuzere and Van 

Lipzig (2011), are:  

1. Brightness temperature, TB ≤ 241 K  

2. Area, A ≥  2400km2 or A < 2400km2 and (TB minimum in the area/ TB maximum in the 

area) >= TB range, where TB range = 10K 
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!"[!"#, !"#,!!]!

∈ {!! !"#, !"#,!! !|! !! !"#, !"#,!! ≤ 233!! ∧ ((!! !"#, !"#,!! ≥ !! !

∨ (!! !"#, !"#,!! ≤ !! ∧ (!! !"#, !"#,!!_!"#!! !"#, !"#,!!_!"#
≥ !!_!"#$%)!))} 

And,   

!! = !"[!"#, !"#,!!]!,! ∈ !! !!" !"#, !"#,!! !} 

In the “Grab ‘em, Tag ‘em, Graph ‘em” (GTG) graph implementation, the cloud elements 

(CEs) are the graph nodes (the “Grab ‘em” part of the GTG). Furthermore, the process of 

identifying CEs requires them to be given unique identifiers (“Tag ‘em” part of the GTG). Using 

graph theory nomenclature, during the cloud detection stage, a directed graph, G, is created 

where the graph nodes, V(G), are the CEs for each frame.  

The second part of the automated (and semi-automated) algorithm for MCS identification 

involves tracking or evolving the CEs. The GTG algorithm completes this step simultaneously 

with the cloud detection stage. It is recognized that although each CE exists at a discrete time, 

there can be correlation amongst them over time that produces mesoscale convective complexes 

(MCSs). The GTG algorithm implements a combination of the common area-overlapping and 

maximum spatial correlation methods, as summarized in Section 2.2.3.2. From the literature, it 

was found that in the area-overlapping method, CEs that evolve into large-scaled MCSs are 

considered to be correlated if there is greater than 50 percent, or in excess of 10,000 km2, area 

spatial overlap between successive images. In the maximum spatial overlap method, the 

percentage overlap varies according to the temporal resolution of the data – for example, 95 

percent overlap for a maximum two-hour time difference (Goyens et al., 2011).  

In the GTG algorithm, CEs between frames are correlated via the percentage overlap and / or 

area-overlap between CEs of consecutive frames, and in the GTG graph implementation, are 
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represented by the graph edges. The edges of the graph, E(G), are weighted according to 

percentage overlap between the geo-spatial parameters between cloud elements in frames Ft and 

Ft+Δt and are directed from a parent node in Ft to a child node in Ft+Δt. The minimum weight of an 

edge occurs where the percentage overlap between the two CEs is at least 95 percent, whereas 

the maximum weight occurs for a 90 percent overlap, or in excess of 10,000 km2 (Arnaud, 

Desbois & Maizi, 1992; Williams & Houze, Jr., 1987). Thus, a weighting function for the edges, 

!!"#,!"# is defined such that: 

!!"#,!"# = !!!"! !∩ !!!!∆!!"!! (min=95% area overlap, max=90% area overlap 

or area overlap ≥ 10 000 km2). 

The final collection of cloud elements and edges is referred to as a cloud cluster (CC). A CC 

can have a minimum duration of two consecutive frames, and maximum of m consecutive 

frames, where m is number of frames being considered. As such,  

!!! = !"!,! + !"!,(!!∆!) + !"!,(!!!∆!) +⋯+ !!"!,(!!!∆!) 

It is noteworthy that cloud clusters (CCs) do not necessarily involve only one cloud element 

(CE) from a given frame. From observation as a CC evolves, CEs from different frames can 

participate in merging, splitting, growth, decay, or maintenance. At this point, the directed graph 

depicts all the CCs or MCSs found within the time period analyzed, where a CC is a subgraph of 

the directed graph, G. To identify MCSs, each subgraph would have to be searched to determine 

if it meets the criteria. A (deepest) Dijkstra shortest-path search is implemented on each 

subgraph to determine if the MCSs criterion and the MCC criterion for West Africa are met. By 

implementing the Dijkstra shortest-path search in a weighted directed graph, it is assumed that if 

merging and splitting occurs within a CC, there must be the minimum overlap between 

consecutive CEs. 
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Once the graph has been built, node information can also be used to perform search (and 

clip) functions in other datasets. This creates another object for which comparisons within other 

datasets can be conducted / made.  

4.2.1 Implementing the “Grab ‘Em, Tag ‘Em, Graph ‘Em” Method 

The “Grab ‘em, Tag ‘em, Graph ‘em” (GTG) implementation uses the numerical and 

scientific libraries in Python i.e. NumPy and SciPy (Oliphant, 2007). The graph theory is 

implemented using the Networkx Package (Hagberg, Schult & Swart, 2008), and visualizing is 

supported through matplotlib library (Hunter, 2007). Existing functionality in the Apache Open 

Climate Workbench project that reads datasets into five dimensional Numpy arrays (time, 

latitude, longitude, altitude, variable) is also utilized. In the GTG implementation all the datasets 

are voided of their original data format characteristics and are read into NumPy four-dimensional 

arrays (time, latitude, longitude, variable). As such, in theory, any four-dimensional dataset that 

can be represented in that format can implement the GTG algorithm.  

Figure 4.1 illustrates the general workflow of GTG where the parts of the code for user 

development, such as metrics calculation and visualization, are highlighted, as these will vary 

according to user cases. The algorithm implementation is currently standalone, as it does not 

require database access during execution, and the GTG algorithm can work with only IR satellite 

data, or with other dataset(s). 

4.2.1.1 The Cloud Detection and Graph Creation Implementation 

The cloud detection part of the “Grab ‘em, Tag ‘em, Graph ‘em” (GTG) algorithm is 

implemented using functions from numerical and scientific Python libraries. Specifically, the 

SciPy package provides a suite of libraries for multi-dimensional array image processing 

(scipy.ndimage). The segmentation in the ndimage package allows for separating objects of 
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interest from a background using probably intensity thresholding. The connectivity of the objects 

is defined by a structuring element instance. The information retrieved from the segmentation 

process is stored in directed graph, implemented using the Networkx package. NetCDF files are 

generated during this stage using the netCDF4 libraries, so the data will be available outside of 

the running of the application, allowing for further analysis and / or visualization (as illustrated 

in Figure 4.1).  

Figure 4.2 provides the algorithm of this integral part of the GTG algorithm. In the general 

workflow of the GTG, as illustrated in Figure 4.1, this step referred to as “findCloudElements” 

occurs after the original infrared datasets have been read and extracted into a NumPy array. 
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Figure 4.1. The general workflow of the “Grab ‘em, Tag ‘em, Graph ‘em” algorithm. 
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Purpose:: Determines the cloud elements and their evolution in a series of frames from 
different datasets 
Input:: sat_img: masked numpy array in (time,lat,lon,T_bb) representing the IR data.  
 TRMMdirName (optional): a string representing the file path to the local TRMM     

datafiles  
Output:: CLOUD_ELEMENT_GRAPH: a directed Networkx graph of all CEs. The node of 
each graph is a dictionary – cloudElementDict  – that contains unique information about the 
CE e.g. the unique CE identifier, CE time, area, etc.  
BEGIN 
foreach F ∈ sat_img do 
 determine the contiguous areas with TB below 241 K using ndimage methods 
 foreach contiguous areas identified ∈ F do 
  calculate the area 
  if area criteria  OR  area and temperature range criteria 
   contiguous area identified = CE 
                                    create unique CE ID 
   create a netCDF file with the CE ID as a filename 
   store the lats, lons and TB CE data in the netCDF file  

if TRMMdirName 
   open the corresponding local TRMM datafile  
   regrid the TRMM data and extract the relevant info 
   store the lats, lons and precipitation data in netCDF file 

endif 
   create cloudElementDict for this CE 
   create CLOUD_ELEMENT_GRAPH node with cloudElementDict 
   if this is not the first frame 
    determine the edge existence and weighting 
   endif 
  endif 
 end foreach contiguous area 
end foreach frame 
return CLOUD_ELEMENT_GRAPH 
END 
 

Figure 4.2. The algorithm for cloud detection and graph creation of the “Grab ‘em, Tag 
‘em, Graph ‘em” algorithm. 

 

 



 65 

The Networkx package, along with matplotlib libraries, allow for visualization of this 

somewhat abstract process. Figure 4.3 provides insight into the cloud detection and graph 

creation implementation outputs for two locations. In one iteration through the satellite data 

(frames), all the areas of interest were immediately isolated and the complexity of evolving 

systems were captured. During that iteration the abstract concept of a node in the graphs, as 

depicted the uniquely labeled red dots in Figure 4.3, represents information about the CE. Such 

information includes the CE’s unique identifier, its area, its centroid point, and the latitude, 

longitude and value points. Within the Networkx representation, this information is stored in a 

Python dictionary datatype. 
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Figure 4.3. Cloud elements (CEs) observed after implementing the cloud detection and 
graph creation part of the “Grab ‘em, Tag ‘em, Graph ‘em” algorithm. The red dots 

(graph nodes) represent the CEs identified. The text indicates the frame number and the 
CE number for that frame. The lines represent graph edges. Black lines indicate an area 
overlap ≥  95 percent between CEs. Blue dashed lines indicate an area overlap between 95 

and 90 percent. Yellow dashed lines indicate an area overlap ≥  10,000 km2. 

 

4.2.1.2  The “Finding Cloud Clusters” Implementation  

The “find cloud clusters” implementation executes a maximum depth and minimum path 

search on each node of the main tree to determine the cloud cluster (CC), if any, the node 

belongs to, thus pruning the original tree (Figure 4.4). This step occurs after finding all the cloud 

elements and constructing the graph, as illustrated in Figure 4.1. The minimum path search uses 

the Dijkstra shortest-path search (for weighted edges in this case). The Dijkstra shortest-path is 

an algorithm that identifies the minimum cost (the edges define the cost), or the shortest path to 
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traverse from one node of the graph to another. A common practical application of Dijkstra’s 

shortest-path algorithm is finding the shortest route between one city and other cities, as would 

be commonly used by express mailing services. By adding the longest / deepest path criteria on 

to the Dijkstra’s shortest-path, the furthest evolution of a cloud element (CE) can be tracked. The 

graph functions used are part of the Networkx package.  

 

 

Purpose:: Determines the CCs from the subgraphs in main graph i.e. prunes the graph 
according to a maximum depth and minimum path  
Input:: CLOUD_ELEMENT_GRAPH: a directed Networkx graph of the CEs with 
weighted edges    
Output:: PRUNED_GRAPH: a directed Networkx graph of all CCs from the original data 
BEGIN 
checkedNodes = [] 
foreach node ∈ CLOUD_ELEMENT_GRAPH do 

if node ∉ checkedNodes 
find the Dijkstra shortest path and longest length for node in 
CLOUD_ELEMENT_GRAPH 
foreach pathNode ∈ Dijkstra shortest path do 

if PRUNED_GRAPH ∌  pathNode 
add pathNode to PRUNED_GRAPH 
add related edge info from CLOUD_ELEMENT_GRAPH 

endif 
end foreach pathNode 
update checkedNodes with pathNode 

endif  
end foreach node 
return PRUNED_GRAPH 
END  
 

Figure 4.4. The algorithm for determining cloud clusters in the “Grab ‘em, Tag ‘em, Graph 
‘em” method. 
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Figure 4.5 provides a visualization of this process, where the location in Figure 4.5 

corresponds to those in Figure 4.3. Implementing the Dijkstra shortest- and longest-path searches 

on each node, immediately the complexity of the graph reduces, and some subgraphs from the 

cloud detection stage divide into separate subgraphs. To illustrate, the complex tree that ranges 

from F1CE3 to F16CE2 in Figure 4.3 reduces to two trees in Figure 4.5. In Figure 4.5, the first 

corresponding subgraph indicates that the tree originating at F1CE3 and ending at F16CE2 

taking a simpler path, whereas the second subgraph that originated from the complex tree F1CE3 

to F16CE2 in Figure 4.3 originated from F7CE12 and ended at F15CE5. Though not provided 

here, at this stage it is possible to visualize each CE on a geospatial map from the associated 

outputted netCDF files (Figure 4.1). 
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Figure 4.5. Cloud clusters observed after implementing the “find cloud clusters” part of the 
“Grab ‘em, Tag ‘em, Graph ‘em” algorithm. The red dots (graph nodes) represent the CEs 

identified. The text indicates the frame number and the CE number for that frame. The 
lines represent graph edges. Black lines indicate an area overlap ≥  95 percent between CEs. 
Blue dashed lines indicate an area overlap between 95 and 90 percent. Yellow dashed lines 

indicate an area overlap ≥  10,000 km2. 
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4.2.1.3 Mesoscale Convective Complexes Search Implementation 

The purpose of the mesoscale convective complex (MCC) search implementation is to 

determine if any of the cloud clusters (CCs) (subgraphs / subtrees in PRUNED_GRAPH) meet 

the criteria (Table 2.2) for MCCs, as outlined by Laurent, D’Amato and Lebel, (1998), using the 

IR satellite data (MERG in this case). This step follows the “findCloudClusters” step as 

illustrated in Figure 4.. Notably, characteristics about the sub-graphs (alias sub-trees) that are 

created as a result of cloud cluster implementation will govern the graph methods used to 

facilitate the MCC searches. Figure 4.3 and Figure 4.5 demonstrate such characteristics are:  

(1) The subgraphs created are directed, as the time increases from frame to frame. 

Furthermore, there is no direct connectivity between neighbors (nodes, or CEs in this 

case, within the same frame). Neighbors can however be connected through a node 

that splits thus creating children, or from merging nodes, where parents merge into 

one. 

(2) The subgraphs are non-binary graphs as more than two nodes can be connected to one 

node from the previous frame.  

(3) The complexity of the generated subgraphs varies. In some cases, there will be a 

‘simple’ CC to search. A simple CC is defined as subgraph with (a) no merges or 

splits of CEs between frames; (b) only merging of CEs between frames; (c) only 

splitting of CEs between frames. In other cases, there will be complex subgraphs, 

where nodes both merge and split, though their frequency may be less than simple 

graphs. 

(4) In general, the subgraphs will be very connected.  
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For the MCC search, a method to traverse the subtree to check each CE (node) and determine 

whether it meets the MCC criteria is required. Basic methods for searching directed non-binary 

trees include the depth-first search (DFS) and the breadth-first search (BFS). The DFS is an 

algorithm to traverse a tree in search of a node. The search starts at the root of the tree then 

explores as far as possible along a branch downwards as far as possible. It then backtracks to the 

root and explores another root in the same manner, until the desired node is found, or until the 

entire tree is traversed. The BFS is an algorithm to search and / or traverse a tree to find a node. 

The BFS starts at the root of the tree and laterally checks all nodes before exploring another 

level, until the desired node is found or the entire tree is traversed. There are limitations 

associated with either method. One such limitation is the DFS runs the risk of never terminating 

and being time inefficient, whilst the BFS is space inefficient, especially for large trees. In this 

study, a combination of a traversal method including DFS and BFS is required. A BFS traversal 

alone would discredit any new CEs (nodes) that were not connected directly to the head node, 

and thus this study merits the use of both DFS and BFS.  

The depth-first iterative deepening (DFID) search algorithm is an optimization of the time-

inefficient depth-first search (DFS) algorithm, and space-inefficient breadth-first search (BFS) 

algorithm (Korf, 1985). The search originates at the root node and a DFS search at a depth of one 

is performed, where all the nodes on that level are then checked in a BFS-like search. The tree 

traversal is continued in this fashion until the maximum depth of the tree, or the desired node, is 

reached. The main disadvantage of the DFID is the ’wasted computation’ performed prior to 

reaching the desired node. However, Korf, (1985) showed that the asymptotic growth of the 

running time of the DFID as a search algorithm is not affected by the ‘wasted computation’ time. 
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In this implementation, the idea is to reach the end of the tree and not to search for a node, as the 

Dijkstra’s shortest-path was already implemented at the cloud cluster stage.  

The DFID implements recursion to traverse (or search) a tree as far across on a level as 

possible in the tree. This includes searching complex structures during that breadth-wise path, 

before deepening. As such, complex branches of the ‘main’ tree can be searched before iterating 

within the depth of the tree. The algorithm for the modified DFID as implemented is illustrated 

in Figure 4.6, with examples of the traversal provided in Figure 4.7. Typically, the DFID 

implementation uses a stack datatype – a last-in, first-out (LIFO) datatype that allows for 

information to be added and removed from the same end of an entity. However, in this 

implementation, in order to account for searching the tree in the forward and backward direction, 

a modified stack datatype is used. Specifically, the stack behavior is modified in this 

implementation when searching backwards for parents of a merged node, where new information 

is added to frontend of the entity.  

The complexity of a traversal can be expressed as a function of the branching factor in space, 

b; and the depth of the solution, d. The modified DFID performs a DFS to depth one. Then 

discards the nodes generated in the d=1 search, start over and do a DFS for d=2, repeating this 

pattern until the end node is reached. Further, the modified DFID expands all nodes up to and 

below a given level (d) for each node identified in the DFS, in a recursive fashion. As such, the 

space complexity is O(bd), and the time complexity O(bd).  
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Algorithm for traverseTree 
Purpose:: To traverse a tree using a modified depth-first iterative deepening (DFID) 
search algorithm. Recursive implementation. 
Input:: subGraph: a Networkx directed graph representing a CC 
 lengthOfsubGraph: an integer representing the length of the subgraph 
 node: a string representing the node currently being checked 
 stack: a list of strings representing a list of nodes in a stack functionality i.e. Last- 
                      In-First-Out (LIFO) for sorting the information from each visited node 
 checkedNodes: (optional) a list of strings representing the list of the nodes in the 
traversal 
    Output:: checkedNodes: a list of strings representing the list of the nodes in the 
traversal 
 BEGIN 
if len(checkedNodes) = len(subGraph) 

return checkedNodes 
endif 
if not checkedNodes 

empty stack 
update checkedNodes with node 

endif 
if the parents of node exists 

add node to (front) of stack 
endif 
if children of node exists 

add node to (end) stack 
endif 
foreach eachNode ∈ stack 

if eachNode not in checkedNodes 
update checkedNodes with eachNode 
return traverseTree(subgraph,eachNode,stack,checkedNodes) 

endif 
end foreach eachNode 
END 
 

Figure 4.6. The algorithm for the modified depth first iterative deepening search 
implemented in this study. 
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Figure 4.7. Examples of the results from the modified depth first iterative deepening search 
implemented in this study. 
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The mesoscale convective complex (MCC) in the “Grab ‘em, Tag ‘em, Graph ‘em” (GTG) 

algorithm will be defined by consecutive cloud elements (CEs) that meet the area-temperature 

criteria, the duration criteria and the shape criteria. The MCC search not only identifies the 

feature, but also notes the various stages of development, from initiation, through maturity, to 

decay. Though the MCC search algorithm itself is very simple (Figure 4.8), it calls various utility 

functions to actually perform the checks. The MCC search implementation utilizes the Networkx 

libraries.  

 

 

Purpose:: Determines if a subgraph (or part thereof) is a MCC according to Laurent et al. 
(1998) criteria 
Input::: PRUNED_GRAPH: a directed Networkx graph of all CCs from the original data 
Output:: finalMCCList: a list of dicts of nodes representing MCCs. The dictionary 
contains information about the MCC, its duration, the full MCC i.e. the developing and 
decaying CEs (nodes) that would not have meet the MCC criteria in a CC that contains a 
MCC. Also note that the nodes contain lat,lon data in a 4D array (time, lat,lon,TB) 

finalMCCList: a list of dicts of nodes representing all MCSs  
BEGIN 
foreach subgraph ∈ PRUNED_GRAPH do 

treeTraversalList = a modified DFID traversal to determine the order of the nodes 
check the treeTraversalList to determine if MCCs are a part of that tree  
update  finalMCCList 
update  finalMCSList 
store relevant information in a text file 

end foreach subgraph 
return finalMCCList, finalMCSList 
END 
 

Figure 4.8. The algorithm for finding mesoscale convective complexes according to the 
Laurent, D’Amato and Lebel (1998) criteria in the “Grab ‘em, Tag ‘em, Graph ‘em” 

method. 
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4.2.1.4 Tracking the Feature Using Tropical Rainfall Measuring Mission Data 

Once the mesoscale convective current (MCC) (or the mesoscale convective system (MCS)) 

has been determined from the MCC search algorithm within the MERG data, the identified 

feature(s) can be extracted from other datasets, such as the Tropical Rainfall Measuring Mission 

(TRMM). This functionality in the “Grab ‘em, Tag ‘em, Graph ‘em” (GTG) method can occur in 

one of two ways: either, (1) initially when the cloud elements were being identified, the location 

to the TRMM files (TRMMdirName in the “find cloud elements” algorithm in Figure 4.2) was 

provided, so that data can be extracted and stored in the node’s dictionary, or (2) after the MCC 

has been identified in the MERG dataset, individual TRMM files (or other identified files) can be 

searched. Specifically considering TRMM data, the function examines how to find the 

precipitation rates and totals associated with the MCC feature (Figure 4.9).  

The “find precipitation rates” algorithm requires regridding of the data so that the datasets 

can be compared. A bilinear spatial regridding is done to bring the lower resolution data to the 

higher resolution dataset, utilizing existing modules from the Apache OCW. The corresponding 

latitude and longitude locations are then extracted and stored for further metrics calculations and 

post-processing.  
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Purpose:: Determines the precipitation rates for MCSs found 
Input:: CEdirName: a string representing the directory for the generated CE netCDF files  
            TRMMdirName: a string representing the directory for the TRMM netCDF files 
            MCSList: a list of strings representing the nodes that contribute to a MCS (MCC) 
Output:: allCEnodesTRMMdata: a list of dictionaries of the TRMM data  
       NB: also creates netCDF with TRMM data for each CE (for post processing) 
BEGIN 
foreach node ∈ MCSList do 

open the corresponding CE netCDF file that was generated during the cloud 
element detection stage 
determine the lat,lon limits of the CE 
open the corresponding TRMM file for the time (frame number) 
regrid (lat and lons) the TRMM data to the CE data 
extract the TRMM data within the lat,lon limits and store as a netCDF file 
store extracted TRMM data as a 4D array (time, lat, lon, precip_rate) i.e. same 
format at the CE data, in the dictionary 
calculate area precipitation data  
determine maximum and minimum precipitation rates within the CE 
update allCEnodesTRMMdata 

end foreach node 
return allCEnodesTRMMdata 
END 
 

Figure 4.9. The algorithm for finding precipitation rates and totals in the “Grab ‘em, Tag 
‘em, Graph ‘em” method. 

 

 

At this stage of running the “Grab ‘em, Tag ‘em, Graph ‘em” (GTG), there is ample data for 

post-processing and visualization.  
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CHAPTER 5. CASE STUDIES IMPLEMENTING THE “GRAB ‘EM, TAG ‘EM, GRAPH 

‘EM” METHOD 

In this section, three case studies will be used to explore the accuracy of the “Grab ‘em, Tag 

‘em, Graph ‘em” (GTG) algorithm, where possible results will be compared with existing 

methods and existing values for various parameters. For all of the case studies, the area 

considered is within West Africa.  

5.1 Case study 1: Tracking a Mesoscale Convective System in Niamey, Niger  

The primary objective of this case study is to demonstrate the accuracy of the “Grab ‘em, 

Tag ‘em, Graph ‘em” (GTG ) algorithm for the purposes of identifying a mesoscale convective 

system (MCS) in an infrared (IR) dataset, as compared to other methods. The secondary 

objective is to identify the precipitation characteristics associated with the feature. A MCS 

feature that occurred over Niamey, Niger (12°N–17°N, 8°E–8°W) is examined for the 36-hour 

period between 0000 UTC 11 Sep 2006 to 1200 UTC 12 Sep 2006. The 4 km MERG dataset 

resolution implies that a total of 60,280 spatial data points are considered in this domain, with 

440 points in the x-direction and 137 data points in the y-direction. The run involves analyzing a 

total of 2,170,080 data points for each dataset. This case study is easily conducted on a personal 

portable computer. 

This location and time period is considered because other methods specifically the Tracking 

of Organized Convection Algorithm through a 3-dimensional Segmentation (TOOCAN) 

algorithm, as illustrated by Fiolleau and Roca (2013), and the area-overlapping method, as 

outlined by Mathon and Laurent (2001), observed this feature that occurred during the African 

Monsoon Multidisciplinary Analysis (AMMA) project. The AMMA project is an international 
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project geared at improving and increasing the scientific understanding of the West African 

Monsoon (WAM) with an emphasis of its variability on daily to interannual timescales 

(Redelsperger et al. 2006). During this project, measurements of MCSs over West Africa were 

made using a number of instruments including in situ radar, aircraft measurements and of course 

satellite data during summer 2006. The results of the area-overlapping method, as derived by 

Mathon and Laurent (2001) were presented in the study completed by Fiolleau and Roca (2013). 

Additionally, Fiolleau and Roca (2013) used infrared (IR) data from the METEOSAT second 

generation (MSG-1) in the 10.8 µm channels with 3 km and 15-minute resolutions and a 235 K 

brightness temperature (TB) threshold was implemented. The reader is directed to Bouniol et al. 

(2010) for more information regarding the meteorology of the feature.  

5.1.1 Comparing the Cloud Detection and Tracking of the “Grab ‘em, Tag ‘em, Graph 

 ‘em” Method with Other Methods  

During the time period, the Grab ‘em, Tag ‘em, Graph ‘em” (GTG) identified seven cloud 

clusters (CCs) of varying complexity and duration (ranging from two hours to 15 hours), as 

illustrated in Figure 5.1. Of the seven CCs, three were considered as mesoscale convective 

systems (MCSs). The MCS in question is the feature that appeared on 1100 UTC 11 Sep 2006 

(node F12) and lasted until 0200 UTC 12 Sep 2006 (F25). This MCS originated from three cloud 

elements at 1100 UTC, specifically F12CE1, F12CE2 and F12CE3. Furthermore, two of these 

CEs - F12CE2 and F12CE3 - merged to form a CE at 1200 UTC (F13CE3), while F12CE1 

evolved into F13CE2 at the time. In addition, at 1200 UTC, new CEs (F13CE5 and F13CE6) 

were formed. Splitting of CEs also occurred within this MCS. More specifically, at 1800 UTC, 

CE F19CE3 split, being observed as two CEs, F20CE1 and F20CE4, at 1900 UTC. In general, 

this MCS demonstrates a complex structure. 
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(a) 

 
(b) 

Figure 5.1. (a) Cloud clusters and (b) mesoscale convective systems identified over Niamey, 
Niger between 0000 UTC 11 Sep 2006 and 1000 UTC 12 Sep 2006 by the “Grab ‘em, Tag 

‘em, Graph ‘em” method. 
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Figure 5.2 shows the MCS in the original IR data, and the identified CEs from the GTG 

algorithm. Immediately, general features in the original IR dataset are identified. Furthermore, at 

some times, such as at 1700 UTC (F18), delineation of the large area identified in the original IR 

data is provided, as individual CEs are identified (F18CE1, F18CE2, F18CE3). From the original 

IR images, these GTG-identified CEs are areas of deep convection. After implementing the 

Dijkstra’s shortest-path, as outlined by the CCs in Figure 5.1(b), the GTG identified a correlation 

between the CEs at 1700 UTC (F18) and 1800 UTC (F19) such that the smaller CE, F18CE1 is 

correlated with the larger part of the system (F19CE2) and F19CE1. This is shown as the dashed 

line in Figure 5.3. By 1900 UTC (F20) the two CEs from 1800 UTC are observed as one CE. 

This splitting and merging detail within the system has potential application to determining core 

locations of high precipiating rates in large-scale features.  

Additional analysis and comparison of the identification of the CEs against the results of the 

TOOCAN algorithm and the area-overlapping method further validates the “Grab ‘em, Tag ‘em, 

Graph ‘em” (GTG) methodology. The TOOCAN algorithm identified 32 MCSs, whereas the 

area-overlapping method identified five. The comparable definition of MCS between these two 

algorithms and the GTG is the cloud cluster, and the GTG identifies seven of these features. A 

limitation of the area-overlapping method is the creation and / or dissipation of MCSs by 

‘unnatural’ splitting or merging of CEs. In this case study, the area-overlapping method initiated 

two ’unnatural’ events.  Neither the TOOCAN algorithm nor the GTG algorithm exhibits this 

behavior. Furthermore, the GTG identified decay (splitting) and regeneration (merging) stages in 

the morphology of the MCSs as the complexity of the graph. 



!
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Figure 5.2. Cloud detection and tracking of the MCSs from 1100 UTC 11 Sep 2006 to 0200 UTC 12 Sep 2006 over Niamey, 
Niger. The first column illustrates the MERG images, the second column outlines the MCSs detected by the algorithm 

presented. 
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Figure 5.3. Cloud detection and tracking of the MCSs from 1700 UTC 11 Sep 2006 to 2100 
UTC 11 Sep 2006 over Niamey, Niger. The first column illustrates the MERG images, the 

second column outlines the MCSs detected by the algorithm presented. The arrows indicate 
the connections between the CEs after the Dijkstra’s shortest-path search (solid arrows). 

The dashed arrow indicates an edge that not a part of the shortest-path found. 

 

 

The TOOCAN algorithm, which identifies the convective seeds, or areas of deepest 

convection, and iteratively generates the MCS from this radial point outwards, initiated the 

feature at 1200 UTC 11 Sep 2006, whereas the area-overlapping method initiated the feature at 

1300 UTC 11 Sep 2006. The “Grab ‘em, Tag ‘em, Graph ‘em” (GTG) initiated the feature at 

1100 UTC 11 Sep 2006. Like the other methods, the GTG algorithm recognizes this feature as a 

large MCS, but does not identify it as a MCC.  
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The MCS reached its maximum extent around 2000 UTC with a maximum area of 177,392 

km2. This value is larger than the TOOCAN algorithm (79,000 km2) and the overlapping method 

(162,000 km2). These size differences are related to the temperature threshold used in the studies 

and the varying infrared datasets. The CE detection approach in the GTG captures the large-scale 

shape of the feature, including the warmer parts of the system, and in a non-iterative approach. 

This factor becomes increasingly important when the precipitation associated with the feature is 

being estimated.  

In general, the “Grab ‘em, Tag ‘em, Graph ‘em” (GTG) algorithm identified the same major 

mesoscale convective system (MCS) as the TOOCAN algorithm one hour earlier (at 1100 UTC 

11 Sep 2006) and two hours earlier than the traditional overlapping method. Additionally, the 

GTG algorithm identified more MCSs and more independent features than the traditional 

overlapping method. The identification of convective seeds was not as efficient as the TOOCAN 

algorithm; nonetheless the identification of CEs surpassed that of the area-overlapping method, 

and the temperature data was maintained within each identified CE. The premise of the GTG 

method is fundamentally opposite to the TOOCAN algorithm, in that it seeks to delineate an 

entire cloud area associated with a feature as oppose to convective cores. Furthermore, the 

original temperature information is retained in this delineated area and stored in netCDF format 

for post-processing to meet individual research needs.  

5.1.2 Using the “Grab ‘em, Tag ‘em, Graph ‘em” Method to Determine Precipitation 

 Characteristics  

Neither the TOOCAN algorithm nor the area-overlapping method provides an automated 

method for determining precipitation characteristics associated with the feature. The “Grab ‘em, 

Tag ‘em, Graph ‘em” (GTG) implementation of the characterization of the mesoscale convective 
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system (MCS) from the Tropical Rainfall Measuring Mission (TRMM) rainfall data indicates 

that, during the event, rainfall accumulations over the location ranged from 10 mm to 120 mm, 

although a small area, as compared to the entire precipitating area, actually received the larger 

totals (Figure 5.4). 

 

 

 

 

Figure 5.4. The accumulated precipitation in mm for the duration of the MCS over 
Niamey, Niger between 1100 UTC 11 Sep 2006 and 0200 UTC 12 Sep 2006. 

 

 

Figure 5.5 provides an idea of when, where, and the rates of rainfall during the event. The 

initial stages of the MCS indicate that the cloud elements were mostly precipitating, as indicated 

by the large percentages. In the mature stage of the MCS, the precipitation area was greatly 
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reduced as compared to the feature. The feature was most active between 1600 UTC and 1800 

UTC 11 Sep 2006 (Figure 5.6).  

 

 

 

 

Figure 5.5. The spatial and temporal distribution of rainfall for cloud elements ≥ 2,400 km2. 
The circles represent the relative area of each cloud element to the total area of the system. 

The percentage of the cloud element that was precipitating is illustrated.  
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Figure 5.6. TRMM distribution of rainfall for selected times.  

 

5.1.3 Summary of Case Study 1 

The “Grab ‘em, Tag ‘em, Graph ‘em” method demonstrated its graph implementation 

innately captures MCS morphology and its lifecycle. The GTG method accurately identified the 

mesoscale convective system feature in the IR dataset. The precipitation characteristics 

associated were also identified during the automated run, which provides a functionality no other 

existing method has. The single case event ran on a personal computer in 3.4 minutes.  
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5.2 Case Study 2: Tracking a Mesoscale Convective Complex in Burkina Faso  

The main objective of this case study is to illustrate the performance of the algorithm in 

identifying and characterizing a mesoscale convective complex (MCC) feature in an infrared and 

precipitation rate dataset. The African Easterly Wave (AEW) of 28 Aug 2009 to 5 Sep 2009 is a 

well-documented weather feature because of its socio-economic impact. A small mesoscale 

convective system (MCS) feature was initiated and rapidly grew to form an MCC (~240,000 

km2) by 1500 UTC 31 Aug 2009 (Galvin, 2010). The MCC feature brought heavy rain across the 

countries of West Africa, specifically Niger, Burkina Faso, southern Mali, northern Côte 

d’Ivoire, Guinea, Senegal, The Gambia and Guinea-Bissau between 31 Aug and 3 Sep 2009, 

where the intense rainfall lead to rivers breaking their banks and floods affecting 600,000 

persons across these countries (Floods displace thousands, 2009). The feature received a lot of 

media attention, especially in Burkina Faso, where the daily rainfall total was 263 mm or 

approximately 22 percent of the annual rainfall (from gauge measurements), which lead to over 

more than 150,000 persons fleeing their homes (Burkina Faso 2009; West Africa floods, 2009).  

The synoptic conditions were favorable for MCC development. These conditions included 

low-level wind convergence, mid-level trough, an area of outflow aloft, and favorable wind shear 

aloft. The reader is directed to the Flooding in West Africa (2011) Module on COMET for 

further details. The IR 10.8 micrometer image for 1200 UTC from the METEOSAT satellite 

(Figure 5.7(a)) indicates a large continuous and persistent cloud pattern with the coldest, most 

convective part to the northeast of Burkina Faso (A- the red outline area), and two large areas of 

warmer, lower (medium level) cloud ahead of the convective region (B & C – the yellow 

outlined areas). The high resolution VIS (HRV) image at 1430 UTC (1200 UTC is unavailable) 

indicates a well-defined MCS over Niger-Nigeria with towering anvil cloud tops from the most 
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convective parts of the feature casting shadows (outlined in black in Figure 5.7(b)). Note that the 

feature is very linear (as opposed to circular) and as such, it may not meet the shape criteria as 

outlined by Laurent et al. (1998). In practice, the manual identification of MCCs is generally not 

given a strict shape criterion because MCCs are usually embedded in other systems and/or 

sufficiently short-lived that this property is not clearly defined. 

This location and time period are considered because a significant MCS event impacted the 

region during this time, which was subsequently covered by experts in meteorological studies 

such as the Flooding in West Africa (2011) Module on COMET and Galvin (2010). Thus, a 

comprehensive and agreed upon analysis that uses various datasets prepared by experts is 

available for the feature. The domain over Burkina Faso (5°N–19°N, 5°E–9°W) is examined for 

the 48-hour period between 0000 UTC 31 Aug 2009 and 2300 UTC 1 Sep 2009. The 4 km 

MERG dataset resolution implies that a total of 161,408 spatial data points are considered in this 

domain – 416 points in the x-direction and 388 data points in the y-direction. The run involves 

analyzing a total of 7,747,584 data points for each dataset. The case study took 7.6 minutes to 

run on a personal computer system. The feature is explored with a range for the shape criterion 

(0.5 < eccentricity  ≤1.0).  
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(a) 

 
(b) 

Figure 5.7: (a) Annotated IR 10.8 micrometer imagery on 1200 UTC 31 Aug 2009 over 
West Africa. The MCS over Burkina Faso is considered here. A- the red outlined area 

represent the coldest part of the MCS and the B & C – the yellow outlined areas represent 
the warmer non-convective areas.  (b) The annotated high resolution VIS satellite image for 
the same MCS at 1430 UTC. The black outlined areas indicate regions of deep convection. 

 

 

5.2.1 Tracking the mesoscale convective complex with MERG data using “Grab ‘em, Tag 

 ‘em, Graph ‘em” Method 

The “Grab ‘em, Tag ‘em, Graph ‘em” (GTG) algorithm identified six cloud clusters within 

the West Africa region. However, the focus remains on the one that affected Burkina Faso. The 

graphical representation of that feature (Figure 5.8) indicates a relatively complex mesoscale 

convective system (MCS) feature throughout the duration of the time-period analyzed. The GTG 

algorithm recognizes the ‘formation’ of an MCS in the location 0000 UTC 31 Aug 2009 at the 

start of the period of the data analyzed. The shape and temperature criteria conform to that of a 

MCC at 1100 UTC, and the minimum duration of this area, and temperature criteria in order to 

be classified as a MCC, is met by 1700 UTC. At 1500 UTC 31 Aug 2009, the feature area was 
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251,744 km2. The feature existed for 21 hours, until 0900 UTC 1 Sep 2009 (F34), meeting the 

area and temperature criteria. The noted initiated MCC and duration, according to the “Grab ‘em, 

Tag ‘em, Graph ‘em,” correlates with the times in Flooding in West Africa (2011) Module on 

COMET. 

 

 

 

 

Figure 5.8. The graph representation of the mesoscale convective system observed from the 
“find cloud clusters” part of the GTG algorithm.  
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During this MCC’s lifetime, the maximum extent was observed at 0600 UTC 1 Sep 2009 

(F31CE1) as 441,504 km2, and the eccentricity at this time was 0.54. The largest eccentricity 

recorded during the MCC feature was 0.6 at 1800 UTC 31 Aug 2009 and the feature area was 

322,752 km2. From the meteorological analysis, it is known that the feature was imbedded in a 

larger feature. The “Grab ‘em, Tag ‘em, Graph ‘em” (GTG) indicates that the system ‘decayed’ 

between 1000 UTC 1 Sep 2009 (F35) and F42, and then strengthened, meeting the MCC area 

and temperature criteria, between 1800 UTC (F43) and 2100 UTC (F46). Figure 5.8 provides the 

full area distribution for the MCC.  
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Figure 5.9. The area distribution for the MCC observed over Burkina Faso between 0000 
UTC 31 Aug 2009 and 2300 UTC 1 Sep 2009. The dots qualitatively represent the area of 

each cloud element.  

 

It is observed that the MCC feature gradually grew during until ~1200 UTC 31 Aug 2009, 

when it rapidly grew in size. There was a brief decay of the feature before regrowth, and 

maintenance of the large feature. 
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5.2.2 Precipitation Characteristics of the Mesoscale Convective Complex using the “Grab 

 ‘em, Tag ‘em, Graph ‘em” Method with Tropical Rainfall Measuring Mission Data 

The original infrared images, the “Grab ‘em, Tag ‘em, Graph ‘em” (GTG) algorithm cloud 

detection, and the Tropical Rainfall Measuring Mission (TRMM) rainfall are provided for select 

times within the mesoscale convective system in  

Figure 5.10. Small areas are noticeable, being recognized as cloud elements in spite of their 

small sizes, as compared to the major feature. In general, the meteorological features as 

explained are represented within the data captured by the “Grab ‘em, Tag ‘em, Graph ‘em” 

algorithm. 
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Figure 5.10. Cloud detection and tracking of the MCS centered over Burkina Faso from 
1200 UTC 31 Aug 2009 to 0900 UTC 1 Sep 2009. The first column outlines the MERG 

images, the second column represents the MCSs detected by the GTG algorithm presented, 
and the third column illustrates the TRMM rainfall under the features as detected by the 

GTG algorithm. The black lines indicate some of the connectivity within the MCS. 
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The precipitation distribution (Figure 5.11) indicates that from early in the lifetime of the 

feature (the blue), a large percentage of the feature was precipitating. Furthermore, even in the 

moments of ‘reorganization,’ the feature was still precipitating over a large area.  

 

 

 

 

Figure 5.11. The spatial and temporal distribution of rainfall for cloud element in the MCS 
between 0000 UTC 31 Aug 2009 (blue circle) until 0900 UTC 1 Sep 2009 (red circle). The 

circles represent the relative area of each CE to the total area of the system. The 
percentage of the of the cloud element that was precipitating is illustrated. The oval 

indicates the main feature that grows into the MCC.  

 

 

Figure 5.12 provides the accumulations for the feature between 0000 UTC to 0900 UTC 1 

Sep 2009 and for the 24-hour period 0000 UTC 1 Sep 2009 to 0000 UTC 2 Sep 2009. As 

expected, the TRMM accumulations are lower than the rain gauge value reported. Nonetheless, it 

can be seen that most of the rainfall within the 24-hour period was associated with the MCC. 
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(a) 

 

(b) 

Figure 5.12. (a) TRMM accumulations for the MCS feature between 0000 UTC and 0900 
UTC 1 Sep 2009. (b) TRMM accumulations for the 24-hour period starting 0000 UTC 1 

Sep 2009. 

 

 

5.2.3  Summary of Case Study 2 

The “Grab ‘em, Tag ‘em, Graph ‘em” (GTG) algorithm was able to identify a mesoscale 

convective complex (MCC) and provide rainfall characteristics of the event. As this particular 

MCC was embedded within the large-scale synoptic feature of the African Easterly Wave, it 

demonstrates the ability of the GTG algorithm to identify MCC features even if they are 

embedded within other large-scaled mesoscale convective systems.  
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5.3 Case Study 3: A Long-term Analysis of Mesoscale Convective Complexes in  West 

 Africa  

The objective of this case study is to determine the validity of the “Grab ‘em, Tag ‘em, 

Graph ‘em” (GTG) algorithm being used in as an analysis tool to quantify relationships between 

cloud parameters and their precipitation characteristics for periods longer than the lifetime of a 

given feature. The experiment considers the domain 7.5°N–17.5°N and 20°E–17.5°W. The 4-km 

MERG dataset resolution implies that of 391,678 spatial data points are considered for each day 

and dataset - 1,041 points in the x-direction and 277 data points in the y-direction. This translates 

to 9,400,272 data points to be analyzed for each day. Whereas the short-term record experiments 

were conducted on a personal portable computer, these long-term experiments were conducted 

on a server system located at the National Aeronautics and Space Administration’s (NASA) Jet 

Propulsion Laboratory (JPL). The MCC-Server is a dedicated virtual machine (VM) instance, 

supported by a fully redundant 8Gb/s Storage Area Network (SAN) system. This VM is hosted 

on the latest Dell enterprise-level hardware that includes redundant processors, redundant 

memory (mirrored), and direct access to the internal SAN switch fabric. The MCC-Server 

instance is deployed with 6 2.3Ghz CPU cores, 12GB 1600Mhz memory, and 2TB of SAN 

storage RAID disk space. Monthly runs took approximately 9 hours to complete. 

The Laing et al. (1999) study determined from manual methods that 41 MCCs that occurred 

in West Africa between 17 July and 30 September 1987 – 10 in July, 19 in August and 12 in 

September – and characterized the precipitation associated with the features using microwave, 

infrared and surface gauge data. It should be noted that even though this is the only seasonal 

study of MCCs in West Africa, the year 1987 was a year of notable drought in the region (Lélé & 

Lamb 2010). The “Grab ‘em, Tag ‘em, Graph ‘em” (GTG) algorithm identified 62 MCCs 
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between July - September 2006 (Table 5.1). This number of features identified is larger than the 

season according to the Laing et al. (1999) findings the July and August results are comparable, 

furthermore the total are comparable with data from Laing and Fritsch (1993). The maximum 

duration identified was 37 hours and the minimum duration 6 hours. (There was no limit to the 

length of time that the MCC criteria could be maintained in the experiment). The shape of the 

identified MCCs ranged between 0.7 and 1.0 for the identified features, with an average 

eccentricity of 0.85. The average area of the features is within the limits of the MCC size limits 

for this location (Laing & Fritsch, 1993). The rainfall rates are between the limits of the 

aforementioned studies, though it is recognized the actual values may be higher.  

 

 

Table 5.1. The cloud and rainfall variables analyzed in the “Grab ‘em, Tag ‘em, Graph 
‘em” algorithm for Jul – Sep 2006.  

 

Symbols Definition and units Jul Aug Sep 
N Number of features 23 20 19 

LD Life duration (h) 10.04 11.0 12.35 
Vav Propagation speed (m s-1) 9.06 9.25 8.38 

!!"!"# Average maximum area (km2) from IR 
data 

225,644.67 285, 687.20 261,709.16 

!!"##!"# Average precipitating area (km2) from 
TRMM data 

121,913.89 146,637.09 156,569.55 

!!"# Average maximum precipitation rate 
(mm h−1) 

22.85 23.64 20.64 

pA Average area precipitating w.r.t. the 
area (%) 

62.09 68.57 75.35 
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5.3.1 Summary of Case Study 3 

The results from this experiment encourage a more thorough examination of the algorithm 

for periods and domains longer and larger than individual events. But the “Grab ‘em, Tag ‘em, 

Graph ‘em” method has not yet been optimized for such studies. There were some computational 

shortcomings that were identified during the case study as will be explained in the following 

section.  

5.4 Computational Lessons  

The short-term datasets highlighted the need to generate better storage methods such as data 

type compression methods for generated files. As an illustration, the MERG raw data files 

represent the brightness temperature as an integer, by subtracting ‘75’ from the original floating-

point number. This type of compression may be useful to consider for future development.  

During the case study analyzing long-term dataset, limitations regarding the GTG 

algorithm’s handling of computer resources were experienced (Figure 5.13). Specifically, the 

MCC-Server consistently terminated the program due to a lack of memory. These crashed lead to 

experimenting with the domain and amount of data being ingested to identify the core reasons 

for the crashes. The exercises identified two causes, though these may not be the only causes. 

The first reason proposed is that a large percentage of computational resources are spent 

managing data files on the front end in order to build the graph. This limitation was 

demonstrated in the larger domain runs, for example the domain 7.5°N–17.5°N and 20°E–

17.5°W where the GTG algorithm terminated after opening 47 days of data. 
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Figure 5.13. An analysis of the limitations of the number of data points that can be accessed 
using the “Grab ‘em, Tag ‘em, Graph ‘em” algorithm for long-term runs. The red line 

indicates the data point limit due to data extraction, while the green line indicates the data 
point limit related to data analysis. 

 

 

The second limitation was identified memory leaks during the “finding cloud clusters” and 

/or “finding cloud elements” stage. In this case, it is recognized that GTG algorithm has not been 

tested for optimum datatype implementation and data compression methods. To illustrate, using 

a 64-bit floating-point number to hold a variable that could be represented as a 16-bit integer, 

inefficiently uses the computer resources.  Furthermore, it is noted that the GTG algorithm code 

is not yet parallelized to leverage the multiprocessor capabilities of systems.   
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CHAPTER 6. CONCLUSIONS, CONTRIBUTIONS AND FUTURE WORK 

Time- and computer-efficient methods for identifying weather systems in long-term high 

spatial and temporal resolution datasets are required in the Atmospheric Science community. The 

February 2014 launch of the Global Precipitation Measurement (GPM) satellite will improve on 

the Tropical Rainfall Measuring Mission (TRMM) product and provide greater coverage 

between 65 °N and 65 °S. The GPM satellite will also generate high-resolution data in both 

space and time. Even before this dataset amasses, methods for efficiently searching for weather 

features from satellite datasets will be necessary.  The “Grab ‘em, Tag ‘em, Graph ‘em” (GTG) 

algorithm begins to address the need for such methods in gridded four dimensional (time, lat, 

lon, variable) datasets. 

6.1 Conclusions  

The first step to addressing this need was presented in the work conducted in this 

dissertation. This research considered a method for identifying mesoscale convective complexes 

(MCCs) in infrared and precipitation satellite datasets of varying resolutions, through the 

implementation of methods uncommon to those existing in the atmospheric science data 

processes. The method, the “Grab ‘em, Tag ‘em, Graph ‘em” (GTG) algorithm, was 

implemented using graph theory, and Python as the programming language. The key findings of 

the GTG algorithm were: 

1. The GTG algorithm can identify mesoscale convective systems (MCSs) in infrared 

datasets, as well as efficiently and accurately track them through time.  

2. The GTG algorithm can identify mesoscale convective complexes (MCCs) – a sub-

class of large-scale MCSs. 
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3. The GTG algorithm can complete an end-to-end identification of MCC features in 

multiple datasets without manual intervention. 

4. The GTG algorithm can easily be deployed as a standalone program on a personal 

computing device for short-term data analysis. 

5. The GTG algorithm can be easily adapted to identify other large-scale MCSs, allow 

for other metrics calculations, and provide visualizations. 

6. The GTG algorithm has been a developed in a modular fashion thus allowing for code 

reusability and encourages development. 

6.2 Contributions  

6.2.1 Thesis contributions 

Overall, the work completed in this dissertation has provided a set of methods, algorithms 

and techniques for searching four-dimensional datasets. The key contributions of this work 

extend beyond the Atmospheric Science community, and extend into the Computer Science 

community as well. From the studies presented, the key contributions include: 

1. A novel method of considering the identifying weather features. The “Grab ‘em, Tag 

‘em, Graph ‘em” (GTG) expounds on the premise of ‘grabbing’ only the areas of 

interest required from a data frame for analysis and graphing them according to their 

spatial correlations between times. This directly contrasts the static-in-space domain 

approaches that are commonly used in the Atmospheric Sciences, to analyze weather 

features and / or climate features. 

2. An automated method for identifying weather features in infrared satellite datasets 

while following their complex evolution for timescales longer than an individual 

event. 
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3. A fully automated process of finding the associated precipitation of identified MCC 

(and large-scaled MCSs) in various datasets to provide precipitation characteristics. 

4. A search and clip functionality that should work with any four dimensional (time, lat, 

lon, variable) dataset.  

5. A modification of traditional graph traversal methods to address a particular 

application. The modified depth-first iterative deepening traversal is used to traverse 

the tree to determine any mesoscale convective complexes (MCCs). 

6.2.2 Research Accomplishments 

In addition to the contributions listed above, the following practical accomplishments related 

to this work have been completed to date: 

1. Establishing of collaborations between the Regional Climate Model Evaluation 

System (RCMES) team and Howard University’s Atmospheric Science Program.  

2. Publishing of papers including Whitehall et al., (2012), Whitehall, Chiao & Mayers-

Als, (2013), and Mattmann et al., (2013)  

3. Presentations of posters at the American Geophysical Union (AGU) Fall Meeting in 

2012 and 2013, as well as an oral presentation at the American Meteorological 

Society (AMS) 94th Annual Meeting in February 2014. The poster presentation titled 

“An Automated Method to Identify Mesoscale Convective Complexes (MCCs) 

Implementing Graph Theory” at the AGU Fall 2013 meeting won an Earth and Space 

Science Informatics Outstanding Student Presentation Award.  

4. Publishing of aspects of the “Grab ‘em, Tag ‘em, Graph ‘em” algorithm on the 

Apache Open Climate Workbench project wiki.  
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5. Publishing the “Grab ‘em, Tag ‘em, Graph ‘em” source code as a branch on the 

Apache Open Climate Workbench GitHub repository 

(https://github.com/kwhitehall/climate) 

6.3 Practical Concerns 

A concern about the efficiency of the “Grab ‘em, Tag ‘em, Graph ‘em” (GTG) algorithm was 

outlined, where the algorithm labored with analyses of more than 50 days of data at a time. 

While this seems to potentially reduce the applicability of the GTG algorithm with long-term 

data analysis, there are some immediate future research points that are geared at addressing this 

concern. 

6.4  Future Work 

The findings of this work have shown promise of the “Grab ‘em, Tag ‘em, Graph ‘em” 

(GTG) algorithm in applications requiring short-term or long-term satellite datasets. As such, 

there are many fruitful areas of research that are identified. 

6.4.1 Immediate Future Work 

In the immediate future, addressing the practical concerns / limitations observed in this study 

is necessary. As such, suggested near-term research directions include:  

1. Further testing of single-event and / or short-term case studies in West Africa and 

other locations for full verification of the algorithm in infrared satellite datasets would 

further the algorithm’s usefulness in the community.  

2. Exploring the precipitation characteristics of MCCs in various datasets e.g. GPCC, 

CMORPH and reanalysis datasets.  
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3. Analysis of the identified systems from the summer 2006 case study for full 

verification of the long-term implementation. 

4. Extensive debugging to improve the use of computer resources, through the 

optimization of datatypes and objects used in the GTG algorithm, as well as the 

implementation of datatype compression for storage, following the format of the 

original datasets. 

5. Extending the GTG algorithm to searches within databases of satellite data. 

Furthermore, using the Regional Climate Model Evaluation Database (RCMED) as 

an instance of a “non-graph” database, and creating a Neo4j1 database for an instance 

of a graph database, encourages the open-sourced development of the algorithm. 

6. Exploring the algorithm design and computational efficiency of the modified depth-

first iterative deepening traversal.  

7. Exploring the range of mesoscale convective systems the GTG algorithm can capture.  

6.4.2 Future Directions  

The potential of the “Grab ‘em, Tag ‘em, Graph ‘em” (GTG) algorithm in searching satellite 

datasets can be applied to both weather and climate applications. One application for the GTG 

algorithm includes using it to identify mesoscale convective complexes (MCCs) in weather 

model datasets, such as those from the Weather, Research and Forecasting (WRF) model. 

Another application involves using the GTG algorithm to characterize precipitation 

characteristics of MCCs from various satellite instruments. Additionally,  

1. Parallelizing the GTG algorithm, thus increasing the code run-time efficiency and 

usage of computation resources. This will enhance the use of the GTG algorithm with 

                                                
1 http://www.neo4j.org/ 
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long-term and / or high-resolution datasets. Parallelization may include splitting the 

tasks on computer processors according to times within the dataset being analyzed, or 

according to each cloud cluster formation identified. Parallelization may also include 

finding ways to scale the graph through investigating the use of graph processing 

engines like the Apache Hadoop2-based Apache Giraph3.   

2. Explore using the GTG algorithm with weather model outputs for forecasting 

applications.  

3. Explore using the GTG algorithm in climate evaluations. 

4. Exploring methods to visualize the results from long-term records of data 

5. Exploring using machine learning with the algorithm to forecast MCCs.  

As the future work listed above demonstrates, this thesis enables the beginning of new 

research areas, especially related to identifying and characterizing weather features in big 

datasets. 

                                                
2 http://hadoop.apache.org/ 
3 https://giraph.apache.org/ 
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